期刊文献+

一种改进的隐马尔可夫模型训练算法 被引量:1

A Modified Training Algorithm of Hidden Markov Model
下载PDF
导出
摘要 将类关联特征(class-dependentfeature,CDF)用于隐马尔可夫模型(hiddenMarkovmodel,HMM)的建模,提出了一种新的HMM训练算法,与传统的HMM训练算法在理论上完全一致,但新算法避免了直接估计高维的状态输出概率密度函数(probabilitydensityfunction,PDF),可提高模型参数的估计精度。 Using the class-dependent feature (CDF) into the modeling problem of hidden Markov model(HMM), this paper presents a novel HMM training algorithm and demonstrates that the new algorithm is the same in theory as traditional algorithm, but without the necessity of estimating high-dimensional probability density function.
作者 王新民
机构地区 孝感学院物理系
出处 《孝感学院学报》 2004年第3期74-77,共4页 JOURNAL OF XIAOGAN UNIVERSITY
基金 湖北省教育厅重点项目(2002A02004)
关键词 类关联特征 隐马尔可夫模型 训练算法 class-dependent feature hidden Markov model training algorithm
  • 相关文献

参考文献13

  • 1[1]L.E.Baum,T.Petrie.Statistical inference for prob-abilistic function of finite state Markov chains [J].Annals of Math. Statistic,1996,(6):1554-1563.
  • 2[2]L.E.Baum,J.A.Egon.An inequality with applic-ations to statistical estimation for probabilisticfunctions of a Markov process and to a model for ecology [J].Bull.Amer. Meteorology , 1967,(2):360-363.
  • 3[3]L.Rabiner.A tutorial on hidden Markov modelsand selected applications in speech recognition[J].Proc. IEEE,1989,(2) :257-286.
  • 4[4]L.E.Baum,T.Petrie.A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[J].Annals of Math. Statistic.1970,(1):164-171.
  • 5[5]L.E.Baum.An inequality and associated maximi-zation technique in statistical estimation for proba-bilistic functions of Markov processes[J].Inequali-ties,1970,(1):1-8.
  • 6[6]S.E.Leveson, L.Rabiner. An introduction to theapplication of the theory of probabilistic functions of Markov process to automatic speech recognition[J].Bell System Journal,1983,(4):1035-1047.
  • 7[7]L.R.Bahl,F.Jelinek,R,A,Mercer.A maximum likelihood approach to continuous speech recogni-tion[J]. IEEE Trans. Patten Analysis and Machine Intelligence,1983, (1) :179-190.
  • 8王新民,鲁德初.量化子空间分布隐马尔可夫模型的间接训练[J].孝感学院学报,2003,23(6):5-8. 被引量:3
  • 9[9]M.J.F.Gales,Semi-tied covariance matrices for hidden Markov models[J].IEEE Trans.Speech Audio Processing,1999,(3):272-281.
  • 10[10]P.M.Bagggenstoss.Class-specific features inclassification[J].IEEE Trans.on Signal Process-ing,1999,(12):3428-3432.

二级参考文献9

  • 1B. Mak, E. Bocchieri. Direct training of subspace distribution clustering hidden Markov model. IEEE Trans. Speech Audio Processing, 2001, 9(4): 378-387.
  • 2E. Bocchieri, B. Mark. Subspace distribution clustering for continuous observation density hidden Markov models. Proc. 5th Eur. Conf. Speech Communication Technology, 1997, 1: 107-110.
  • 3J. R.Bellegarda, D. Nahamoo. Tied mixture continuous parameter modeling for speech recognition. IEEE Trans. Acoustics, Speech, Signal Processing, 1990,38:2033 -2206.
  • 4S. Tadahashi, S. Sagayama. Four-level tied-strucutre for efficient representation of acoustic modeling. Proc. IEEE Int. Conf. Acoustics, Speech, Signal processing, 1995,1 : 520-523.
  • 5L. Rabiner, B.H.Juang. Fundamentals of Speech Recognition. USA: Prentice-Hall, 1993.
  • 6郝杰,李星.汉语连续语音识别中经典HMM的实验评测[J].计算机工程与应用,2001,37(13):1-4. 被引量:6
  • 7王新民,姚天任.一种基于SDTS的HMM训练算法[J].信号处理,2003,19(1):40-43. 被引量:8
  • 8王新民,姚天任.量化子空间分布隐马尔可夫模型[J].华中科技大学学报(自然科学版),2003,31(7):16-18. 被引量:8
  • 9王新民,黄新堂,姚天任.基于多相关分组的HMM训练算法[J].华中师范大学学报(自然科学版),2003,37(2):179-182. 被引量:5

共引文献8

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部