期刊文献+

Impacts of land use and climate change on regional net primary productivity 被引量:8

土地利用和气候变化对区域净初级生产力影响(英文)
下载PDF
导出
摘要 Combined with recent historical climate data and two periods of land use datasets from remote sensing data, we test the net primary productivity (NPP) data sets in North Chinamodelled by the satellite data-driven Global Production Efficiency Model (GLO-PEM) for detecting thewidespread spatial and temporal characteristics of the impacts of climate and land use change onthe regional NPP. Our results show that over the past 20 years, the mean annual temperature in thestudy region has remarkably increased by more than 0.064 ℃, but over the same period, there hasbeen a 1.49 mm decrease in annual precipitation and decrease in NPP by an annual rate of 6.9 TgC.The NPP changes in the study region were greatly affected by the average temperature andprecipitation by ten-day periods as well as the seasonal temperature and precipitation in the studyregion. The correlation between seasonal NPP and seasonal precipitation and temperature is highlyconsistent with land cover spatially, and the correlation coefficient changes with the changes ofvegetation types. The analysis reveals that the related areas in land use change only take up 5.45%of the whole studied region, so the climate changes dominate the impacts on the NPP in the wholestudy region (90% of the total). However, land use plays an absolute dominative role in areas withland cover changes, accounting for 97% of the total. From 1981 to 2000, the NPP in the whole studyregion remarkably reduced due to obvious precipitation decrease and temperature rise. Between twoperiods of land use (about 10 years), the changes in climate are predicted to promote a decrease inNPP by 78 ( + -0.6) TgC, and integrated impacts of climate changes and land use to promote adecrease in NPP by 87(+-0.8) TgC. Combined with recent historical climate data and two periods of land use data sets from remote sensing data, we test the net primary productivity (NPP) data sets in North China modelled by the satellite data-driven Global Production Efficiency Model (GLO-PEM) for detecting the widespread spatial and temporal characteristics of the impacts of climate and land use change on the regional NPP. Our results show that over the past 20 years, the mean annual temperature in the study region has remarkably increased by more than 0.064 oC, but over the same period, there has been a 1.49 mm decrease in annual precipitation and decrease in NPP by an annual rate of 6.9 TgC. The NPP changes in the study region were greatly affected by the average temperature and precipitation by ten-day periods as well as the seasonal temperature and precipitation in the study region. The correlation between seasonal NPP and seasonal precipitation and temperature is highly consistent with land cover spatially, and the correlation coefficient changes with the changes of vegetation types. The analysis reveals that the related areas in land use change only take up 5.45% of the whole studied region, so the climate changes dominate the impacts on the NPP in the whole study region (90% of the total). However, land use plays an absolute dominative role in areas with land cover changes, accounting for 97% of the total. From 1981 to 2000, the NPP in the whole study region remarkably reduced due to obvious precipitation decrease and temperature rise. Between two periods of land use (about 10 years), the changes in climate are predicted to promote a decrease in NPP by 78 (±0.6) TgC, and integrated impacts of climate changes and land use to promote a decrease in NPP by 87(±0.8) TgC.
出处 《Journal of Geographical Sciences》 SCIE CSCD 2004年第3期349-358,共10页 地理学报(英文版)
基金 National 973 Project No.2002CB412507 National Natural Science Foundation of China No.90202002 Knowledge Innovation Project of IGSNRR CAS No.CXIOG-E01-02-04 One Hundred Talents Program of CAS.
关键词 climate change land use change NPP GLO-PEM North China Northeast China 土地利用 气候变化 区域净初级生产力 人造卫星
  • 相关文献

参考文献4

二级参考文献25

共引文献1188

同被引文献195

引证文献8

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部