期刊文献+

高压差迷宫式调节阀盘片降压级数 被引量:18

Depressurization stage number of disc in high pressure drop labyrinth control valve
下载PDF
导出
摘要 针对高压差迷宫式多级降压调节阀内部迷宫盘片设计中如何确定盘片降压级数的核心技术问题,根据可压缩流体力学理论,对迷宫式调节阀内部盘片降压级数计算公式进行了推导和分析.并借助计算流体力学商业软件CFX,对3种不同降压级数盘片流道模型的内部流动进行了数值模拟计算,获得了不同级数流道内部的压力、速度分布等流场信息,同时绘制了不同级数模型内部的压力及速度变化曲线.分析结果表明:在相同工况下,增加盘片降压级数有利于合理逐级平稳降压,合理分配压降负担,使盘片中的流速平缓上升并降低流体出口能量.另外,当降压级数已能满足出口能量标准时,继续增加级数的作用相对较弱.研究结果可以为迷宫式调节阀及相关产品的研发提供一定的参考. How to confirm depressurization stage number on disc is the key design problem for high pressure drop labyrinth control valve.According to the compressible fluid dynamic theory,the calculation formula of depressurization stage number on disc was deduced and analyzed.Numerical simulation of the internal flow in three path models with different stage number were performed by using commercial software CFX,and the distribution of pressure and velocity were obtained,while the changing curve were analyzed.The results show that increasing the stage number is beneficial to reach smooth depressurization and equally distribute pressure,as well as to reduce velocity and outlet energy.In addition,it's useless to increase the stage number if the path model has been satisfied with the outlet energy criteria.This study could be used as a reference for design of labyrinth control valve.
出处 《排灌机械工程学报》 EI 北大核心 2013年第12期1072-1076,共5页 Journal of Drainage and Irrigation Machinery Engineering
基金 重庆市技术创新项目(2012-01-026) 兰州理工大学"优秀青年教师培养计划"资助项目(Q201002)
关键词 迷宫式调节阀 曲折流道 降压级数 流速控制 数值模拟 labyrinth control valve tortuous path depressurization stage number velocity control numerical simulation
  • 相关文献

参考文献7

二级参考文献30

  • 1IEC 534-8 Industrial-process Control Valves, Part 8:Noise Considerations.
  • 2Frank S. Find the perfect steam trap[Jl. Chemical Pro- cessing, 2007,70( 1 ) :26 -32.
  • 3李树勋,王结勤,张云龙,等.一种新型倒吊桶可调先导超大排量蒸汽疏水阀:中国,201010563217.5[P].2011-04-06.
  • 4Youn C, Asano S, Kawashima K, et al. Flow characte- ristics of pressure reducing valve with radial slit structure for low noise [ J ]. Journal of Visualization, 2008, 11(4) :357 -364.
  • 5Vallet Christophe, Ferrari Jerome, Rit Jean-Franqois, et al. Single-phase CFD inside a water safety valve[ C l// Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, PVP2010. New York : ASME, 2010,4:335 - 342.
  • 6Zhang Li, Luo Jing, Yuan Ruibo, et al. The CFD ana- lysis of twin flapper-nozzle valve in pure water hydraulic [ J ]. Procedia Engineering, 2012,31 : 220 - 227.
  • 7Majidi K. Numerical study of unsteady flow in a centrifugal pump [ J ].ASME Journal of Turbomachinery, 2005, 127 (2) : 363 - 371.
  • 8Gonzalez J, Santolaria C. Unsteady flow structure and global variables in a centrifugal pump [ J ]. ASME Journal of Fluids Engineering, 2006, 128 (5) : 937 - 946.
  • 9Spence R, Amaral Teixeira J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump [J]. Computers & Fluids, 2009, 38(6) : 1 243 - 1 257.
  • 10Yang J, Preidikman S, Balaras E. A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies [ J ]. Journal of Fluids and Structures, 2008, 24 (2) : 167 - 182.

共引文献63

同被引文献110

引证文献18

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部