摘要
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis;a process known as tumor angiogenesis.Angiogenesis is largely involved in tumor survival,progression and spread,which are known to be significantly attributed to treatment failures.Over the past decades,efforts have been made to understand the difference between nor-mal and tumor vessels.It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes,which provides opportunities for developing novel anticancer strategies.Targeting tumor vasculature is not only a unique therapeutic interven-tion to starve neoplastic cells,but also enhances the efficacy of conventional cancer treatments.Vascular dis-rupting agents(VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors,cause catastrophic vascular shutdown within short time,and induce secondary tumor necrosis.VDAs are cytostatic;they can only inhibit tumor growth,but not eradicate the tumor.This novel drug mechanism has urged us to develop multiparametric imaging biomark-ers to monitor early hemodynamic alterations,cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected.In this article,we review the characteristics of tumor vessels,tubulin-destabilizing mechanisms of VDAs,and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials.We also compare the differ-ent tumor models adopted in the preclinical studies on VDAs.Multiparametric imaging biomarkers,mainly diffu-sion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging,are evalu-ated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.
基金
Supported by(partially) The grants awarded by Fonds voor Wetenschappelijk Onderzoek-Vlaanderen(FWO Vlaanderen) Impulsfinanciering project(ZWAP/05/018)
Geconcerteerde Onderzoeksactie of the Flemish Government,OT project(OT/06/70)
the K.U.Leuven Molecular Small Animal Imaging Center MoSAIC (KUL EF/05/08)
the center of excellence In vivo Molecular Imaging Research of K.U.Leuven and a EU project Asia-Link CfP 2006-EuropeAid/123738/C/ACT/Multi-Proposal No.128-498/111