期刊文献+

三维装配几何约束组合的分类求解策略 被引量:3

Classification and Solution of 3D Assembly Geometric Constraint System Between Two Rigid Bodies
下载PDF
导出
摘要 针对两个刚体之间的三维几何约束求解问题,依据几何约束的参数结构分析了角度约束和距离约束的解耦性,给出了角度约束和距离约束可解耦求解的条件;然后对两个刚体之间的几何约束进行组合分析,总结出约束度不小于2的几何约束构成的组合只有几十种,且均可采用几何推理方法进行求解;最后阐述了附加方向约束、冗余约束和矛盾约束对数值求解的不利影响,提出了三维几何约束组合的分类求解策略,并用实例验证了该求解策略的有效性。 It is a key problem to solve the geometric constraint system between two rigid bodies(GCSBTRD) efficiently and stably when 3D geometric constraint system has been decomposed into a series of GCSBTRDs using equivalent constraint substitution method. In this paper, the decoupling conditions to separately solve angle constraints and distance constraints of GCSBTRDs are presented after analyzing the parametric structure of angle constraints and distance constraints. Then, with the geometric analysis of GCSBTRDs, it is found that the GCSBTRDs consisting of the geometric constraints with more than one constraint degrees can be divided into dozens of patterns, which can all be solved analytically by geometric reasoning method. Subsequently, the adverse impact on numerical solution of GCSBTRDs from additional direction constraint, redundant constraint and contradictory constraint is addressed to demonstrate the advantage of geometric reasoning method. Finally, a hybrid solving strategy based on the classification of constraint combinations is proposed to solve GCSBTRDs, whose effectiveness has been validated by a practical example.
出处 《图学学报》 CSCD 北大核心 2014年第2期236-242,共7页 Journal of Graphics
基金 国家自然科学基金资助项目(51375185) 中国工程物理研究院总体工程研究所创新与发展基金资助项目(13cxj19)
关键词 几何约束 解耦性分析 冗余约束 几何推理 geometric constraint decoupling analysis redundant constraint geometric reasoning
  • 相关文献

参考文献11

二级参考文献147

共引文献82

同被引文献35

  • 1丁建完,侯文洁,熊涛.雅克比矩阵近似更新的三维装配约束求解研究[J].图学学报,2014,35(3):368-373. 被引量:1
  • 2高小山,蒋鲲.几何约束求解研究综述[J].计算机辅助设计与图形学学报,2004,16(4):385-396. 被引量:43
  • 3张方,秦远田,邓吉宏.复杂分布动载荷识别技术研究[J].振动工程学报,2006,19(1):81-85. 被引量:37
  • 4杨路,侯晓荣,曾振柄.多项式的完全判别系统[J].中国科学(E辑),1996,26(5):424-441. 被引量:31
  • 5石志良,陈立平.装配位置约束建模及求解[J].计算机辅助设计与图形学学报,2007,19(5):553-557. 被引量:6
  • 6Ait-Aoudia S, Foufl~u S. A 2D geometric t'onstraint solver using a graph reduction method [ J ]. Advances in Engineering Software, 2010,41(10) :1187-1194.
  • 7Mathis P, Sehreek P, lmbach R. Decomposition of geometrical con- straint systems with reparameterization [ C ]//Proc of the 27th Annual ACM Symposium on Applied C()mputing. 2012 : 102- 108.
  • 8Mathis P. A follnalization of geometric constraint systems and their decomposition [ J ]. Formal Aspects of Computing, 2010,22 ( 2 ) : 129- 151.
  • 9Kim J, Kim K, Choi K. Solving 317 geometric constraints fi~r assem- bly modeling [ J ]. International Journal of Advanced Manufactu- ring Technology,2000,16( 11 ) :843-849.
  • 10Zhang Guifang, Gad Xiaoshan. ~'ell-eonstrained completion and de- composition for under-eonstrained geometric constraint problems [ J ]. International Journal of Computational Geometry & Applica- tions,2006, t 6 ( 5/6 ) :461-478.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部