期刊文献+

活动轮廓模型影像分割方法综述 被引量:2

A Survey on Active Contour Models for Image Segmentation
下载PDF
导出
摘要 影像分割在影像处理和计算机视觉领域有着重要的应用。本文主要对活动轮廓模型影像分割方法进行了综述。从能量泛函的表达和解算、分割区域的数目、能量泛函的构造、能量泛函数据项中包含的基本信息和其他信息等方面对活动轮廓模型进行总结和概括,并重点介绍一些经典的能量泛函模型,同时涵盖了活动轮廓模型的一些最新研究进展。 Image segmentation plays an important role in the fields of image processing and computer vision.This article gives a review on active contour models(ACM)for image segmentation.It summarizes the expressions and solutions of different energy functions of ACM,construct methods of the energy function,two phases and multiphases image segmentation model,and information contained in energy function.This paper also gives some classical energy function models and briefly introduces some new developments in ACM research.
作者 李妍
出处 《遥感信息》 CSCD 2014年第1期102-107,共6页 Remote Sensing Information
基金 国家自然科学基金青年基金(41101418) 地理空间信息工程国家测绘局重点实验室开放课题(201131)
关键词 活动轮廓模型 影像分割 CHAN-VESE模型 全局凸分割模型 active contour model image segmentation Chan-Vese model global convex segmentation
  • 相关文献

参考文献40

  • 1KASS M,WITKIN A,TERZOPOULOS D. Snakes:Active contour models[J].International Journal of Computer Vision,1988,(04):321-331.
  • 2OSHER S,SETHIAN J A. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988,(01):12-49.
  • 3CASELLES V,KIMMEL R,SAPIRO G. Geodesic active contours[J].International Journal of Computer Vision,1997,(01):61-79.
  • 4MUMFORD D,SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J].Communications on Pure and Applied Mathematics,1989,(05):577-685.
  • 5CHAN T F,VESE L A. Active contours without edges[J].IEEE Transactions on Image Processing,2001,(02):266-277.
  • 6PARAGIOS N,DERICHE R. Geodesic active regions and level set methods for supervised texture segmentation[J].International Journal of Computer Vision,2002,(03):223-247.
  • 7ZHU S C,YUILLE A. Region competition:Unifying snakes,region growing,and Bayes/MDL for multiband image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,(09):884-900.
  • 8BRESSON X,VANDERGHEYNST P,THIRAN J-P. A variational model for object segmentation using boundary information and shape prior driven by the Mumford-Shah functional[J].International Journal of Computer Vision,2006,(02):145-162.
  • 9ALLILI M S,ZIOU D. Globally adaptive region information for automatic color-texture image segmentation[J].Pattern Recognition Letters,2007,(15):1946-1956.
  • 10ZHANG K,ZHANG L,SONG H. Active contours with selective local or global segmentation:A new formulation and level set method[J].IMAGE AND VISION COMPUTING,2010,(04):668-676.

二级参考文献64

  • 1Osher S, Fedkiw R. Level set methods : An overview and some recent result[J ]. Journal of Computational Physics, 2001,169 ( 2 ) : 463-502.
  • 2Osher S, Sethian J A . Fronts propagation with curvature dependent speed : algorithms based on Hamilton-Jacboi formulation [ J]. Journal of Computational Physics, 1998,79 ( 1 ) :12-49.
  • 3Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(3 ) :266-280.
  • 4Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces [J]. Journal of Computational Phyxics, 1995,118 (2): 269-277.
  • 5Tsitsiklis J N. Efficient algorithms for globally optimal trajectories [J ]. IEEE Transactions on Automatic Control, 1995, 40 ( 9 ) : 1528-1538.
  • 6Serbian J A. A fast marching level set method for monotonically advanceing fronts [ J]. Proceedings of the National Academy of Sciences, 1996, 93 ( 4 ) : 1591 - 1595.
  • 7Song B, Chan T, A fast algorithm for level set based optimization [R ]. CAM-VCLA, Los Angeles, CA, USA : University of California, 2002.
  • 8Chan T,Vese L. Active contour without edges [J]. IEEE Transactions on Image Processing, 2001,10(2) : 226-277.
  • 9Shi Yong-gang, William C K. A fast level set method without solving PDEs [ A ] . In : Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing[C], Philadelphia, Penn. USA : 2005 : 97-100.
  • 10The Insight Toolkit [ CP/OL], http://www.itk,2006.

共引文献32

同被引文献25

  • 1张建,汪天富,李德玉,林江莉,唐红,饶莉.基于对称区域生长算法的超声医学图像分割方法[J].生物医学工程学杂志,2007,24(3):500-503. 被引量:2
  • 2虞红伟.基于活动轮廓模型的乳腺X线图像肿块分割方法的研究[D].杭州:杭州电子科技大学,2010.
  • 3Silverstein M, Recht A, I,agios M, et al. hnagc_detected breast cancer: state-of-the-art diagnosis and treatment [J]. Journal of the American College of Surgeons, 2009. 209(4 ):504-520.
  • 4Siegel R, Nnishadham D,JEMAL A. Cancer statistics, 2012 [J]. CA: a cancer Journal for Clinicians, 2012,62 ( 1 ) : 10-29.
  • 5Papadopoulos A, Fotiadis D I, I.ikas A. Characterization of Clus- tered Microcalcifications in Digitized Mammograms Using Neu ral Networks and Support Vector Machine[J]. Artificial Intelli gence in Medicine, 2005,34 : 141-150.
  • 6Regentova E, Zhang L, Zheng J, et ai. Microcalcification detec- tion based on wavelet domain hidden Markov tree model:Study for inclusion to computer aided diagnostic prompting system. Medical Physics, 2007,3,1 (6) : 2206 2219.
  • 7Wang R, Wan B, Ma Z, et al. Computer-aided detection o{ micro- calcifications in digital_ mammograms using a synthetic technique [C]//International Society for Optics and Photonics Second In- ternational Conference on Image and Graphics. 2002:639-644.
  • 8Timp S,Karssemeijer N. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography[J]. Medical Physics,2004,3(5):957-971.
  • 9Dominguez A R, Nandi A K. Improved Dynamic Programming based Algorithms for Segmentation of Masses in Mammograms [J]. Medical Physics, 2007,34 ( 11 ) : 4256-4269.
  • 10徐秋平,郭敏.基于变宽邻域图割和活动轮廓的目标分割方法[J].计算机工程,2009,35(8):233-235. 被引量:5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部