期刊文献+

校园微博情感分析系统的设计与实现 被引量:3

The design and realization of the micro blog sentiment analysis system for campus network
下载PDF
导出
摘要 近年来,微博在反映社情民意、丰富信息服务等方面发挥着越来越重要的作用.本文基于情感词典和依存文法,提出使用意见模型的方法表示微博文本,将微博中的句子形式化地表示为若干情感元素的组合,首先借助情感词典和修饰词典计算每个情感元素的情感倾向,进而通过加权求和法计算微博语句的总体情感倾向.实验表明该意见模型算法可以有效地判定微博文本情感倾向,以此为基础的微博情感分析系统能很好的支持校园管理的智能决策. In recent years, micro blog play an increasingly important role in reflecting social conditions and public opinions. This paper proposes an opinions model to represent micro blog sentences based on emotional dictionary and dependency grammar, in which every sentence is represent as a group of opinion elements. We calculate the sentiment polarity score of every emotional element based on emotional dictionary and modifier dictionary, and then get a weighted summation sentiment evaluation for each micro blog sentence. The test show that the algorithm could effectively classify the micro blog sentiment tendencies and help to improve the performance of the intelligent decision system for campus management.
出处 《河北工业大学学报》 CAS 北大核心 2013年第6期24-29,共6页 Journal of Hebei University of Technology
基金 国家自然科学基金(61272511) 国家高技术研究发展计划(863)(2013AA01A212)
关键词 情感分析 微博 依存文法 智能决策系统 sentiment analysis dependency grammar micro blog intelligent decision system
  • 相关文献

参考文献1

二级参考文献5

共引文献543

同被引文献41

  • 1朱倩,史燕,程显毅,蔡月红.基于HNC词的聚类[J].郑州大学学报(理学版),2009,41(2):44-47. 被引量:1
  • 2晋耀红.基于语境框架的文本相似度计算[J].计算机工程与应用,2004,40(16):36-39. 被引量:27
  • 3张克亮.基于HNC理论的句法结构歧义消解[J].中文信息学报,2004,18(6):43-52. 被引量:9
  • 4朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 5缪建明,张全.HNC语境框架及其语境歧义消解[J].计算机工程,2007,33(15):10-12. 被引量:5
  • 6KWAK H,LEE C,PARK H,et al.What is twitter,a social network or a news media[A].Proceedings of the 19th International Conference on World Wide Web[C].New York:ACM,2010:591-600.
  • 7DANESCU-NICULESCU-MIZIL C,LEE L,PANG B.Echoes of power:Language effects and power differences in social interaction[A].Proceedings of the 21st International Conference on World Wide Web[C].New York:ACM,2012:699-708.
  • 8SACHAN M,CONTRACTOR D,FARUQUIE T A,et al.Using content and interactions for discovering communities in social networks[A].Proceedings of the 21st International Conference on World Wide Web[C].New York:ACM,2012:331-340.
  • 9GARG A,TAI K.Comparison of statistical and machine learning methods in modelling of data with multicollinearity[J].International Journal of Modelling,Identification and Control,2013,18(4):295-312.
  • 10LUO Y,OUYANG N.Text similarity calculation based on domain feature word[A].International Conference on Automatic Control and Artificial Intelligence[C].New York:IEEE,2012:2049-2051.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部