期刊文献+

基于压缩感知的LFM雷达成像方法 被引量:3

Imaging Method for LFM Radar Based on Compressed Sensing
下载PDF
导出
摘要 压缩感知理论突破了传统Nyquist采样定理的限制,有望降低高分辨雷达成像系统的数据率。将压缩感知思想应用到ISAR成像中,通过对线性调频雷达回波信号模型的稀疏性分析,把成像问题作为一个字典选择问题来描述。介绍了一种基于Stretch处理和傅里叶变换的稀疏字典构造方法,将其与压缩感知理论相结合,提出了一种新的保相性距离压缩算法,并扩展到二维成像中。归纳分析了几种易于实现的数据采集方案,通过仿真实验统计比较了不同测量方案下信噪比和测量数对重构性能的影响,验证了所提算法能够在保证成像质量的同时大大减少测量数,且省略了解线频调过程。 压缩感知理论突破了传统Nyquist采样定理的限制,有望降低高分辨雷达成像系统的数据率。将压缩感知思想应用到ISAR成像中,通过对线性调频雷达回波信号模型的稀疏性分析,把成像问题作为一个字典选择问题来描述。介绍了一种基于Stretch处理和傅里叶变换的稀疏字典构造方法,将其与压缩感知理论相结合,提出了一种新的保相性距离压缩算法,并扩展到二维成像中。归纳分析了几种易于实现的数据采集方案,通过仿真实验统计比较了不同测量方案下信噪比和测量数对重构性能的影响,验证了所提算法能够在保证成像质量的同时大大减少测量数,且省略了解线频调过程。
出处 《数据采集与处理》 CSCD 北大核心 2012年第S2期284-290,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金委杰出青年基金(61025006)资助项目
关键词 雷达成像 压缩感知 线性调频 稀疏字典 随机采样 radar imaging compressed sensing linear frequency modulation(LFM) sparse dictionary random sampling
  • 相关文献

参考文献16

  • 1谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238. 被引量:49
  • 2余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16. 被引量:49
  • 3Donoho DL.Compressed sensing. IEEE Transactions on Information Theory . 2006
  • 4EMMANUEL J C,MICHAEL B W.An Introduction toCompressive Sampling. IEEE Signal Processing Maga-zine . 2008
  • 5G. M. Shi,J. Lin,X. Y. Chen.UWB echo signal detection with ultra-low rate sampling based on compressed sensing. IEEE Trans Circuits Syst II-Express Briefs . 2008
  • 6A. C. Gurbuz,J. H. Mcclellan,W. R. Scott.Compressive Sensing for Subsurface Imaging Using Ground Penetrating Radar. Signal Processing . 2009
  • 7Ender J H G.On compressive sensing applied toradar. Signal Processing . 2010
  • 8Potter L C,Ertin E,Parker J T,et al.Sparsity andcompressed sensing in radar imaging. Proceedingsof the IEEE . 2010
  • 9Tropp J A,Wright S J.Computational Methods for Sparse Solution of Linear Inverse Problems. Caltech ACM Tech.Rep.No. 2009-01 . 2009
  • 10Yoon Y S,Amin G M.Compressed sensing tech-nique for high-resolution radar imaging. ProcSPIE:Signal Process,Sensor Fusion,and TargetRecognition . 2008

二级参考文献34

  • 1Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 2Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 3Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 4Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 5Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 6Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 9Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Candes E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.

共引文献81

同被引文献33

  • 1刘静,李兴国.毫米波高分辨率雷达运动补偿研究[J].现代雷达,2004,26(7):21-23. 被引量:12
  • 2陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,25(2):11-16. 被引量:76
  • 3王旭东,刘渝.全并行结构FFT的FPGA实现[J].南京航空航天大学学报,2006,38(1):96-100. 被引量:19
  • 4狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 5李丽亚.调频步进雷达信号及其合成孔径成像研究[D].西安:西安电子科技大学,2006.
  • 6Berizzi F, Martorella B. The discrete polynomial phase transform[J]. Signal Processing, IEEE Trans- actions on, 1995,43(8) :1902-14.
  • 7Ho-Ryung J, Hyo-Tae K, Dong-Hyun K. Applica- tion of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus[J]. Antennas and Propagation, IEEE Transactions on, 2008,56 (4): 1144-54.
  • 8Wang F, Long T. A new method of velocity estima- tion for inverse V shape stepped frequency signal [C]//CIE International Conference on Radar. Shang hal.. [s. n. ] ,2006.
  • 9SPRABG7. Optimizing loops on the C66x DSP[S]. Texas Instruments, 2011.
  • 10Zhang Y, Li J. Wavelet-based vibration sensor data compression technique for civil infrastructure condition monitoring[J]. Journal of Computing in Civil Engineering, 2006,20(6) :390-399.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部