摘要
A dynamic substructure technique which considers the electromechanical coupling effect of the PZT and the inertial effect of flexible components is presented to study the multiple impact dynamic be- havior of micro/nano piezoelectric impact drive systems. It can investigate the step-like motion of ob- ject body and the multiple impacts behaviors reasonably by the comparison of the experimental data and the numerical solution of the spring-mass model. It is expected to have higher accuracy in the numerical simulations of the motion and the responses, especially to high frequency pulse voltage excitations. The present dynamic substructure technique has firstly studied reasonably the propaga- tions of piezoelectric-induced transient waves and impact-induced transient waves. It is helpful to the failure analysis and the design of piezoelectric stack and flexible components. The present dynamic substructure technique can be applied to the transient dynamics optimization design and the precision control of the micro/nano piezoelectric impact drive systems.
A dynamic substructure technique which considers the electromechanical coupling effect of the PZT and the inertial effect of flexible components is presented to study the multiple impact dynamic behavior of micro/nano piezoelectric impact drive systems. It can investigate the step-like motion of object body and the multiple impacts behaviors reasonably by the comparison of the experimental data and the numerical solution of the spring-mass model. It is expected to have higher accuracy in the numerical simulations of the motion and the responses, especially to high frequency pulse voltage excitations. The present dynamic substructure technique has firstly studied reasonably the propagations of piezoelectric-induced transient waves and impact-induced transient waves. It is helpful to the failure analysis and the design of piezoelectric stack and flexible components. The present dynamic substructure technique can be applied to the transient dynamics optimization design and the precision control of the micro/nano piezoelectric impact drive systems.
基金
Supported by the National Natural Science Foundation of China (Grant No. 10872095)
National Basic Science Project (Grant No. a2620060249)
2008 Natural Science Foundation of Jiangsu Province (Grant No. BK2008408)
2007 Graduate Student Innovation Project of Scientific Research of Jiangsu Province and the Inno-vation Project of Nanjing University of Science and Technology