期刊文献+

Transformation relationship among different magnetic minerals within loess-paleosol sediments of the Chinese Loess Plateau 被引量:2

Transformation relationship among different magnetic minerals within loess-paleosol sediments of the Chinese Loess Plateau
原文传递
导出
摘要 The dominant magnetic minerals and carriers of magnetic signals within the Chinese Loess Plateau are magnetite, maghemite, hematite, and goethite. In this study, we investigated the provenance and evo- lution of magnetic minerals during loess pedogenesis, using X-ray diffraction (XRD) and optical and electron microscopy, including field emission scanning electron microscopy (FESEM) and high- resolution transmission electron microscopy (HRTEM). Our results reveal that single- and multiphase mineral assemblages among magnetic minerals in the loess-paleosol sequence have been formed. Partial oxidation of coarse eolian magnetite has occurred in the desert source area and the oxidation degree is enhanced after deposition of the dust upon the Chinese Loess Plateau. This mode of origin resulted in a microtexture consisting of an inner magnetite core surrounded by a hematite rim, and strongly affected the magnetic characteristics of the loess. Goethite coexists with hematite in the loess and paleosol, and nanometer-scale hematite is formed upon goethite rims via dehydration. Our study provides direct mineralogical evidence of the magnetic record and paleoclimatic implications of the loess–paleosol sequence of the Chinese Loess Plateau. The dominant magnetic minerals and carriers of magnetic signals within the Chinese Loess Plateau are magnetite, maghemite, hematite, and goethite. In this study, we investigated the provenance and evolution of magnetic minerals during loess pedogenesis, using X-ray diffraction (XRD) and optical and electron microscopy, including field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Our results reveal that single- and multiphase mineral assemblages among magnetic minerals in the loess-paleosol sequence have been formed. Partial oxidation of coarse eolian magnetite has occurred in the desert source area and the oxidation degree is enhanced after deposition of the dust upon the Chinese Loess Plateau. This mode of origin resulted in a microtexture consisting of an inner magnetite core surrounded by a hematite rim, and strongly affected the magnetic characteristics of the loess. Goethite coexists with hematite in the loess and paleosol, and nanometer-scale hematite is formed upon goethite rims via dehydration. Our study provides direct mineralogical evidence of the magnetic record and paleoclimatic implications of the loess-paleosol sequence of the Chinese Loess Plateau.
出处 《Science China Earth Sciences》 SCIE EI CAS 2009年第3期313-322,共10页 中国科学(地球科学英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 40772032 and 40573054) National Basic Research Program (Grant No. 2007CB815603)
关键词 Chinese LOESS-PALEOSOL SEQUENCE magnetic MINERALS phase RELATIONSHIPS MINERALOGY Chinese loess-paleosol sequence magnetic minerals phase relationships mineralogy
  • 相关文献

参考文献4

二级参考文献75

共引文献172

同被引文献33

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部