摘要
由于受到信息采集源性能影响,造成了智能车辆避撞预警系统(Collision Warning System,CWS)前后车相对距离测量精度低的问题,针对此问题提出了一种基于机器视觉的预警算法(Collision Warning Algorithm,CWA),利用机器视觉获得了较高精度的测距信息,有效提高了预警算法的有效性。在分析驾驶员驾驶行为基础上,确定CWA的报警准则。基于机器视觉技术建立了一种多输入、多输出的CWA模型,给出了模型预警原理、决策阈值确定方法、逻辑结构图,以及基于机器视觉的车辆信息获取方法。设计了一个单车道双车辆跟驰实车试验,采集模型测试所需的数据,并利用实测数据对模型进行了验证。试验结果显示,平均测距误差不超过3.6 m,预警模型能够准确给出预警信息,对提高车辆行驶主动安全性具有重要意义。
由于受到信息采集源性能影响,造成了智能车辆避撞预警系统(Collision Warning System,CWS)前后车相对距离测量精度低的问题,针对此问题提出了一种基于机器视觉的预警算法(Collision Warning Algorithm,CWA),利用机器视觉获得了较高精度的测距信息,有效提高了预警算法的有效性。在分析驾驶员驾驶行为基础上,确定CWA的报警准则。基于机器视觉技术建立了一种多输入、多输出的CWA模型,给出了模型预警原理、决策阈值确定方法、逻辑结构图,以及基于机器视觉的车辆信息获取方法。设计了一个单车道双车辆跟驰实车试验,采集模型测试所需的数据,并利用实测数据对模型进行了验证。试验结果显示,平均测距误差不超过3.6 m,预警模型能够准确给出预警信息,对提高车辆行驶主动安全性具有重要意义。
出处
《公路交通科技》
CAS
CSCD
北大核心
2011年第S1期124-128,共5页
Journal of Highway and Transportation Research and Development
基金
"十一五"国家科技支撑项目(2006BAG01A012007BAK35B06)
中央高校基本科研业务费专项资金项目(2009JBM055)
北京交通大学人才基金项目(2010RC001)
关键词
碰撞预警算法
机器视觉
collision warning algorithm
machine vision