期刊文献+

Activity criterion of pre-existing fabrics in non-homogeneous deformation domain 被引量:20

Activity criterion of pre-existing fabrics in non-homogeneous deformation domain
原文传递
导出
摘要 The Anderson's model can be applied only to elastic homogeneous deformation and cannot explain complicated phenomena of natural faults, which to a large degree limits the model to practical application. By combing the Coulomb-Mohr Criterion with the sandbox modeling and considering non-homogeneous deformation, mechanisms of how basement pre-existing fabrics control fault formation and evolution are analyzed and a mechanical factor, activation-coefficient (faS) of pre-existing fabrics, is proposed. It is determined by the attitude and mechanical properties of pre-existing fabric, and the stress state (the magnitudes and directions of the three principal stresses). The coefficient has taken the heterogeneity of rocks into account and may serve as a criterion for evaluating the activity of a pre-existing fabric. The Mohr-Coulomb Criterion is expanded to non-homogeneous deformation domain in terms of activation-coefficient (faS) of pre-existing fabrics, the general law of the activity of a pre-existing fabric is predicted, the fault complexity real of rift basin is revealed in theory, and the controlling law of basement pre-existing faults to fault formation and evolution is determined, and checked with sandbox modeling. A new way is provided for in-depth study of faulting. The Anderson’s model can be applied only to elastic homogeneous deformation and cannot explain complicated phenomena of natural faults, which to a large degree limits the model to practical application. By combing the Coulomb-Mohr Criterion with the sandbox modeling and considering non-homogeneous deformation, mechanisms of how basement pre-existing fabrics control fault formation and evolution are analyzed and a mechanical factor, activation-coefficient (faS) of pre-existing fabrics, is proposed. It is determined by the attitude and mechanical properties of pre-existing fabric, and the stress state (the magnitudes and directions of the three principal stresses). The coefficient has taken the heterogeneity of rocks into account and may serve as a criterion for evaluating the activity of a pre-existing fabric. The Mohr-Coulomb Criterion is expanded to non-homogeneous deformation domain in terms of activation-coefficient (faS) of pre-existing fabrics, the general law of the activity of a pre-existing fabric is predicted, the fault complexity real of rift basin is revealed in theory, and the controlling law of basement pre-existing faults to fault formation and evolution is determined, and checked with sandbox modeling. A new way is provided for in-depth study of faulting.
出处 《Science China Earth Sciences》 SCIE EI CAS 2010年第8期1115-1125,共11页 中国科学(地球科学英文版)
基金 supported by National Natural Science Foundation of China (Grant No.40772086) Oil and Gas Exploration Projects in Common Ahead of China National Petroleum Corporation (Grant No.07-01C-01-04)
关键词 Anderson’s model pre-existing FABRIC NON-HOMOGENEOUS DEFORMATION activation-coefficient SANDBOX modeling Anderson’s model pre-existing fabric non-homogeneous deformation activation-coefficient sandbox modeling
  • 相关文献

参考文献59

二级参考文献25

共引文献79

同被引文献309

引证文献20

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部