摘要
Plague,caused by the gram-negative bacterium Yersinia pestis,is a serious and rapidly progressing illness in humans that can be fatal if not treated effectively.The Qinghai-Tibet Plateau is the largest area of natural Himalayan marmot(Marmota himalayana) plague foci in China and covers more than 630000 km2.Akesai County in Gansu Province is a part of this natural focus of plague and was chosen as a study area.Our study used an ecological niche modeling(ENM) approach to predict the potential distribution of the Himalayan marmot.Environment and Disaster Monitor Satellite(HJ-1) data was used to investigate environment factors that affect plague host animal activity.Host animal point data from active surveillance was combined with environmental variables from the HJ-1 satellite and other databases,and the models of the potential distribution of Himalayan marmot were produced with the Genetic Algorithm for Rule-Set Production(GARP).The probability of marmot presence was divided into 0-5%,5%-20%,20%-40%,40%-80%,and 80%-100% subgroups.Areas with 80%-100% probability exhibited the greatest potential for the presence of Himalayan marmot.According to the predicted potential distribution of Himalayan marmot in the study area,active surveillance of plague hosts and plague control and prevention could be more efficient.
Plague,caused by the gram-negative bacterium Yersinia pestis,is a serious and rapidly progressing illness in humans that can be fatal if not treated effectively.The Qinghai-Tibet Plateau is the largest area of natural Himalayan marmot(Marmota himalayana) plague foci in China and covers more than 630000 km2.Akesai County in Gansu Province is a part of this natural focus of plague and was chosen as a study area.Our study used an ecological niche modeling(ENM) approach to predict the potential distribution of the Himalayan marmot.Environment and Disaster Monitor Satellite(HJ-1) data was used to investigate environment factors that affect plague host animal activity.Host animal point data from active surveillance was combined with environmental variables from the HJ-1 satellite and other databases,and the models of the potential distribution of Himalayan marmot were produced with the Genetic Algorithm for Rule-Set Production(GARP).The probability of marmot presence was divided into 0-5%,5%-20%,20%-40%,40%-80%,and 80%-100% subgroups.Areas with 80%-100% probability exhibited the greatest potential for the presence of Himalayan marmot.According to the predicted potential distribution of Himalayan marmot in the study area,active surveillance of plague hosts and plague control and prevention could be more efficient.
作者
GAO MengXu1,4,LI XiaoWen1,2,CAO ChunXiang1,ZHANG Hao1,LI Qun3,ZHOU Hang3 HE QiSheng1,4,XU Min1,4,ZHAO Jian1,4,ZHENG Sheng1,4 & CHEN Wei1,4 1State Key Laboratory of Remote Sensing Science,Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,Beijing 100101,China
2School of Geography,Beijing Normal University,Beijing 100875,China
3Office for Disease Control and Emergency Response,Chinese Center for Disease Control and Prevention,Beijing 102206,China
4Graduate University of Chinese Academy of Sciences,Beijing 100049,China
基金
supported by the Special Grant for Prevention and Treatment of Infectious Diseases (Grant No.2008ZX10004-012)
National Natural Science Foundation of China (Grant No.40871173)