期刊文献+

On the nonexistence of a global nontrivial subsonic solution in a 3D unbounded angular domain 被引量:3

On the nonexistence of a global nontrivial subsonic solution in a 3D unbounded angular domain
原文传递
导出
摘要 In this paper, under some assumptions on the flow with a low Mach number, we study the nonexistence of a global nontrivial subsonic solution in an unbounded domain Ω which is one part of a 3D ramp. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by the potential equation. By establishing a fundamental a priori estimate on the solution of a second order linear elliptic equation in Ω with Neumann boundary conditions on Ω and Dirichlet boundary value at some point of Ω, we show that there is no global nontrivial subsonic flow with a low Mach number in such a domain Ω. In this paper, under some assumptions on the flow with a low Mach number, we study the nonexistence of a global nontrivial subsonic solution in an unbounded domain Ω which is one part of a 3D ramp. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by the potential equation. By establishing a fundamental a priori estimate on the solution of a second order linear elliptic equation in Ω with Neumann boundary conditions on Ω and Dirichlet boundary value at some point of Ω, we show that there is no global nontrivial subsonic flow with a low Mach number in such a domain Ω.
机构地区 Nanjing Univ
出处 《Science China Mathematics》 SCIE 2010年第7期1750-1763,共14页 中国科学:数学(英文版)
基金 supported by National Basic Research Programm of China (Grant No.2006CB805902) National Natural Science Foundation of China (Grant No. 10871096)
关键词 SUBSONIC flow potential equation modified BESSEL FUNCTIONS WEIGHTED Hlder space subsonic flow potential equation modified Bessel functions weighted Hlder space
  • 相关文献

参考文献2

二级参考文献10

  • 1Courant, R., Friedrichs, K. O.: Supersonic flow and shock waves, Springer, New York, 1976
  • 2Schaeffer, D. G.: Supersonic flow past a nearly straight wedge. Duke Math. J., 43, 637-670 (1976)
  • 3Li, T.: On a free boundary problem. Chin. Ann. Math., 1, 351-358 (1980)
  • 4Chen, S. X.: Existence of local solution to supersonic flow past a three-dimensional wing. Adv. Appl.Math., 13, 273-304 (1992)
  • 5Chen, S. X., Xin, Z. P., Yin, H. C.: Global shock waves for the supersonic flow past a perturbed cone.Commun. Math. Phys., 228, 47-84 (2002)
  • 6Majda, A.: One perspective on open problems in multidimensional conservation laws, Multidimensional Hyperbolic Problems and Computation, Springer Verlag, IMA, New York, 29, 217-237, 1990
  • 7Morawetz, C. S.: Potential theory for regular and Mach reflection of a shock at a wedge. Comm. Pure Appl. Math., 47, 593-624 (1994)
  • 8Li, T. S.: Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics 34, Wiley, Masson, New York, Paris, 1994
  • 9Chen Shuxing.Supersonic flow past a concave double wedge[J].Science in China Series A: Mathematics.1998(1)
  • 10Chen,S. X.How does a shock in supersonic flow grows out of smooth data, Jour[].Mathematical Physics.2001

共引文献3

同被引文献3

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部