期刊文献+

Behavior of the Solutions to an Othmer-Stevens Chemotaxis Model with Reproduction Term 被引量:1

Behavior of the Solutions to an Othmer-Stevens Chemotaxis Model with Reproduction Term
原文传递
导出
摘要 In this paper,we study a simplified Othmer-Stevens model with reproduction term. By making use of a smart function transformation,the comparative method and some special mathe-matical analysis,we prove the existence of global,blow-up or quenching solutions of the problem on different conditions. More interesting results are reached. The result of the paper not only verifies a real biological phenomenon,but also provides a theo-retical groundwork for numerical problems of the chemotaxis model. In this paper,we study a simplified Othmer-Stevens model with reproduction term. By making use of a smart function transformation,the comparative method and some special mathe-matical analysis,we prove the existence of global,blow-up or quenching solutions of the problem on different conditions. More interesting results are reached. The result of the paper not only verifies a real biological phenomenon,but also provides a theo-retical groundwork for numerical problems of the chemotaxis model.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2010年第4期277-282,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(10471108)
关键词 CHEMOTAXIS global existence BLOW-UP quenching solution chemotaxis global existence blow-up quenching solution
  • 相关文献

参考文献15

  • 1李俊锋,刘伟安.一类带反应项的Othmer-Stevens型趋化模型解的存在性[J].数学物理学报(A辑),2009,29(6):1561-1571. 被引量:2
  • 2Howard A. Levine,Brian D. Sleeman,Marit Nilsen-Hamilton.Mathematical modeling of the onset of capillary formation initiating angiogenesis[J]. Journal of Mathematical Biology . 2001 (3)
  • 3Levine H A,,Sleeman B D.A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM Journal on Applied Mathematics . 1997
  • 4Hillen T,Stevens A.Hyperbolic models for chemotaxis in 1-D. Nonl Anal Real World Appl . 2001
  • 5Nagai T.Global existence and blow-up of solutions to a chemotaxis system. Nonlinear Analysis . 2001
  • 6Erban R,Othmer H G.From individual to collective behavior in bacterial chemotaxis. SIAM Journal on Applied Mathematics . 2004
  • 7Senba, T,Suzuki, T.Local and norm behavior of blow up solutions to a parabolic system of chemotaxis. J. Korean Math. Soc . 2000
  • 8T. Nagai.Behavior of solutions to a parabolic-elliptic system modelling chemotaxis. J. Korean. Math. Soc . 2000
  • 9Nagai T,Senba T,Yoshida K.Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj Serio Internacia . 1997
  • 10Yang Y,Chen H,Liu W A.On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM Journal on Mathematical Analysis . 2001

二级参考文献18

  • 1Erban R, Othmer H G. From indidual to collective behavior in bacterial chemotaxis. SIAM J Appl Math, 2004, 65(2): 361-391.
  • 2Hillen T, Painter K J. A parabolic model with bounded chemotaxis-prevention of overcrowding. Adv Appl Math, 2001, 26:280-301.
  • 3Hillen T, Stevens A. Hyperbolic models for chemotaxis in 1-D. Nonl Anal: Real World Appl, 2000, 1(3): 409-433.
  • 4Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26:399-415.
  • 5Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence RI: Amer Math Soc, 1968.
  • 6Murray J. Mathematical Biology. Berlin, Heidelberg, New york: Springer, 1993.
  • 7Nagai T. Global existence of solutions to a parabolic systems for chemotaxis in two space dimentions. Nonl Anal Theory, Methods & Applications, 1997, 30(8): 5381-5388.
  • 8Nagai T, Senba T. Global existence and blowup of radial solutions to a parabolic-elliptic system of chemotaxis. Adv Math Sci Appl, 1998, 8:145-156.
  • 9Othmer H C, Sevens A. Aggregation, blowup and collapse: the ABC's of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57:1044-1081.
  • 10Painter K J, Sherratt J A. Modelling the movement of interacting cell populations. J Theor Biol, 2003, 225:327-339.

共引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部