摘要
在圆内或圆外的全纯函数φ(z),Ψ(z)可以展开为Taylor级数或Laurent级数.对于同心圆环域S,用级数展开的方法求解弹性平衡问题就显得比较简单.本文讨论了椭圆环域上的弹性平衡问题,利用复变函数理论,把问题转化为较简单的圆环域的问题求解。
The holomorphic function φ(z),Ψ(z) in a circular or outside of it is able to evolve into Taylor progression or Laurent progression. For the concentric circular ring domain S,the method of progression evolution is simpler in getting the solution of the elastic equilibrium problem in elliptic ring domain. This paper gives the solution of the elastic equilibrium problem in elliptic ring domain. By means of complex variable method,transforming this problem into the relatively simpler problem of circular ring domain,the solution is given.
出处
《阴山学刊(自然科学版)》
2009年第3期8-10,共3页
Yinshan Academic Journal(Natural Science Edition)
关键词
椭圆环域
弹性平衡问题
圆环域
保角映射
全纯函数
Elliptic ring domain
The elastic equilibrium
Circular ring domain
Conformal mapping
holomorphic function