期刊文献+

iPLS-SPA变量选择方法在螺旋藻粉无损检测中的应用 被引量:3

Application of iPLS-SPA variable selection in nondestructive testing of Spirulina powder
下载PDF
导出
摘要 该文研究了基于可见-近红外光谱技术的螺旋藻粉类别无损检测方法。采用簇类独立软模式法(SIMCA)建立可见-近红外光谱模型。全波段光谱所建立的模型得到了93.33%的预测集正确率。文章提出了基于间隔偏最小二乘法(iPLS)和连续投影算法(SPA)的组合光谱变量选择方法进行有效波长的选择。该方法从全波段675个变量中选择了5个最优的有效波段,并且得到了96.67%的预测集正确率。和基于全波段光谱、可见光波段光谱和近红外波段光谱进行SPA运算相比,基于iPLS的SPA运算可以有效减少计算时间。研究表明可见-近红外光谱可以用于对螺旋藻粉类别进行无损检测,同时iPLS-SPA是一个有效的光谱变量选择方法。 The feasibility of using visible and near infrared(Vis-NIR)spectroscopy was evaluated for nondestructivetesting of Spirulina powders.Soft independent modeling of class analogy(SIMCA)was used to establish Vis-NIR spectral calibration model.A correct answer rate(CAR)of 93.33%for the discrimination of three varieties was obtained on full-spectrum.A hybrid variable selection algorithm based on interval partial least squares(iPLS)and successive projections algorithm(SPA)was proposed for the effective spectral variable selection.Five optimal effective variables were selected by that hybrid algorithm from 675 variables of full-spectrum.The CAR of 96.67%for the prediction set was obtained.Compared with the SPA based on the full-spectrum,visible spectra or NIR spectra,SPA based on could reduce the calculation time.The results show that it is possible for the nondestructive testing of Spirulina powders using Vis-NIR spectroscopy,and iPLS-SPA is an effective spectral variable selection algorithm.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2009年第S2期330-334,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家支撑计划(2006BAD10A09 2006BAD10A0711 2006BAD10A0403) 863中国高技术研究发展计划(2007AA10Z210) 国家自然科学基金(30671213 30771669)
关键词 近红外光谱 光谱分析 判别分析 无损检测 螺旋藻粉 near infrared spectroscopy,spectroscopic analysis,discriminant analysis,nondestructive testing,Spirulina powders
  • 相关文献

参考文献19

  • 1李少昆,谭海珍,王克如,肖春华,谢瑞芝,高世菊.小麦籽粒蛋白质含量遥感监测研究进展[J].农业工程学报,2009,25(2):302-307. 被引量:13
  • 2张宁,张德权,李淑荣,李庆鹏.近红外光谱结合SIMCA法溯源羊肉产地的初步研究[J].农业工程学报,2008,24(12):309-312. 被引量:51
  • 3李晋楠,汪志平.RAPD分子标记技术用于螺旋藻(Spirulina)分类的研究[J].海洋与湖沼,2002,33(2):203-208. 被引量:14
  • 4汪志平.蛋白质SDS-PAGE用于螺旋藻分类及突变体鉴定的研究[J].浙江大学学报(农业与生命科学版),2000,26(6):583-587. 被引量:11
  • 5Woo Y A,Kim H J,Ze K R,et al.Near-infrared(NIR)spectroscopy for the non-destructive and fast determination of geographical origin of Angelicae gigantis Radix. Journal of Pharmaceutical and Biomedical Analysis . 2005
  • 6Chen Quansheng,Zhao Jiewen,Zhang Haidong,et al.Qualitative identification of tea by near infrared spectroscopy based on soft independent modelling of class analogy pattern recognition. Journal of Near Infrared Spectroscopy . 2005
  • 7Sáiz-Abajo M J,González-Sáiz J M,Pizarro C J.Near infrared spectroscopy and pattern recognition methods applied to the classification of vinegar according to raw material and elaboration process. Journal of Near Infrared Spectroscopy . 2004
  • 8Costa J A V,,de Morais M G,Dalcanton F,et al.Simultaneous cultivation of Spirulina platensis and the toxigenic cyanobacteria Microcystis aeruginosa. Zeitschrift Fur Naturforschung C-A Journal of Biosciences . 2006
  • 9Khanmohammadi M,Garmarudi A B,Ghasemi K,et al.Artificial neural network for quantitative determination of total protein in yogurt by infrared spectrometry. Microchemical Journal . 2009
  • 10Breitkreitz M C,Raimundo I M,Rohwedder J,et al.Determination of total sulfur in diesel fuel employing NIR spectroscopy and multivariate calibration. The Analyst . 2003

二级参考文献54

共引文献84

同被引文献48

引证文献3

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部