期刊文献+

求解带源项双曲守恒律方程的IGVC格式 被引量:3

IGVC Scheme for Hyperbolic Conservation Laws with Source Terms
下载PDF
导出
摘要 研究带源项双曲守恒律方程的IGVC(改进的群速度控制)格式。为了控制数值方法带来的非物理振荡,引入IGVC格式,考察其TV性质,对于源项我们采用分裂方法处理,该方法用于求解一维浅水方程,数值结果是令人满意的。 Numerical investigation of IGVC(Improved Group Velocity Control) scheme for the hyperbolic conservation laws including source terms is discussed in this paper.To prevent the nonphysical oscillations near the discontinuous,we introduce IGVC scheme.The TV property of IGVC scheme is investigated.A splitting scheme is used to approach the source terms.Numerical experiments for one-dimensional shallow water equations are given to demonstrate the performance of the scheme.
机构地区 中山大学工学院
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第S2期131-135,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10572154) 教育部新世纪优秀人才支持计划资助项目(NCET-06-0731)
关键词 双曲守恒律方程 IGVC格式 源项 hyperbolic conservation laws IGVC(Improved Group Velocity Control) scheme source terms
  • 相关文献

参考文献5

二级参考文献5

  • 1刘儒勋,计算物理,1992年,9卷,4期,479页
  • 2忻孝康,计算流体动力学,1989年
  • 3刘儒勋,力学学报,1984年,16卷,5期,529页
  • 4刘儒勋,第一届计算物理学术会议论文集,1983年
  • 5Fu Dexun,Computational Fluid Dynamics J,1995年,4卷,4期

共引文献6

同被引文献20

  • 1Bradford S F,Katopodes N D.Finite volume model for nonlevel basin irrigation[J].Irrig Drain,2001,127(4):216-223.
  • 2Gottardi G,Venutelli M.Central schemes for two-dimensional dam-break flow simulation[J].Advances in Water Resources,2004,27:259-268.
  • 3Liang Lin,Ni Jinren,Borthwick A G L,et al.Simulation of dam-break processes in the Yellow River[J].Science in China (Series E),2002,45(6):606-619.
  • 4Zienkiewicz O C,Taylor R L著.有限元方法(流体动力学)[M].符松,刘扬扬,译.北京:清华大学出版社,2008.
  • 5Dong Liyun,Lu W Z,Leung A Y T.Finite Volume Method on Simulating ID Shallow-Water Flow over Uneven Bottom:Computational Mechanics Wccm VI in Conjunction with APCOM'04[C].Beijing:2004.
  • 6Fennema R J,Chaudhry M H.Explicit methods for 2D transient free-surface flows[J].JHE,1990,116(8):1013-1034.
  • 7Randall J,Le Veque.Finite volume methods for hyperbolic problem[M].Cambridge:Cambridge University Press,2002:100-232.
  • 8ZHU Q Y, LI Y. An upwind compact approach with group velocity control for compressible flow fields [ J ]. International Journal for Numerical Methods in Fluids, 2004, 44 (5) : 463 - 482.
  • 9VAN LEER B. Towards the ultimate conservative difference scheme II[ J ]. Journal of Computational Physics, 1974(14) :361 - 376.
  • 10BERMUDEZ A, DERVIEUX A, DESIDERI J A, et al. Upwind schemes for the two-dimensional shallow water e- quations with variable depth using unstructured meshes [ J ]. Computer Methods in Applied Mechanics and Engineering, 1998,155 ( 1 - 2) : 49 - 72.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部