期刊文献+

约束最优化问题的非线性无约束方法 被引量:2

Nonlinear Unconstrained Optimization Methods for Constrained Optimization Problems
下载PDF
导出
摘要 总结了近年发展的对不等式约束最优化问题的非线性拉格朗日方法,讨论了零对偶间隙,最优化条件的收敛性以及精确非线性罚函数。 In this paper we sum up the recently developed nonlinear Lagrangian methods for optimization problems with inequality constraints.We also discuss zero duality gap,convergence of optimality condition,and exact nonlinear penalty functions.
作者 杨晓琪
出处 《重庆师范大学学报(自然科学版)》 CAS 2004年第2期1-3,共3页 Journal of Chongqing Normal University:Natural Science
基金 香港政府基金资助项目
关键词 约束最优化 非线性无约束 拉格朗日方法 罚函数 零对偶间隙 收敛性 constrained optimazation inequality constraints nonlinear Lagrangian methods penalty functions
  • 相关文献

参考文献7

  • 1GOH C J,YANG X Q. A Nonlinear Lagrangian Theory for Nonconvex Optimization [ J ]. Journal of Optimization Theory and Applications ,2001,109( 1 ) :99-121.
  • 2RUBINOV A M,GLOVER B M,YANG X Q. Modified Lagrange and Penalty Functions in Continuous Optimization [ J ].Optimization. 1999,46:327-351.
  • 3HUANG X X,YANG X Q. Nonlinear Lagrangian for Multiobjective Optimization and Applications to Duality and Exact Penalization[J]. SIAM J Optimization,2002,13(3):675-692.
  • 4YANG X Q,HUANG X X. A Nonlinear Lagrangian Approach to Constrained Optimization Problems [ J ]. SIAM J Optimization,2001,14:1119-1144.
  • 5RUBINOV A M, GLOVER B M, YANG X Q. Decreasing Functions with Applications to Penalization [ J ]. SIAM Journal on Optimization. 1999,10( 1 ) :289-313.
  • 6RUBINOV A M ,YANG X Q. Langrange-type Functions in Constrained Non-Convex Optimization [ M ]. Boston and London:Kluwer Academic Publishers, 2003.
  • 7WU Z Y,BAI F S,YANG X Q,et al. An Exact Lower Order Penalty Function and Its Smoothing in Nonlinear Programming [J]. Optimization,2004,53 ( 1 ) :51-68.

同被引文献22

  • 1杨轻云,孙吉贵,张居阳.最大度二元约束满足问题粒子群算法[J].计算机研究与发展,2006,43(3):436-441. 被引量:19
  • 2Tsang E P K, Wang C J, Davenport A, et al. A family of stochastic methods for constraint satisfaction and optimization[ R]. Colchester:Technical Report University of Essex, 1999.
  • 3Ghedira K, Jlifi B. A distributed guided genetic algorithm for max_CSPs[J]. Journal of Sciences and Technologies of Information (RSTI), Journal of Artificial Intelligence Series (RIA) ,2002,16(3 ) : 192-207.
  • 4Bouamama S, Ghedira K. ED3 G2A:an enhanced version of the dynamic distribute double guided genetic algorithms for max_ CSPs [ C ]. In proceedings of the 8th world multiconference on systemics, Cybernetics and Informatics (SCI' 04 ) , Orlando, Florida, USA, 2004.
  • 5Bouamama S, Ghedira K. D2 G2 A and D3 G2 A : a new generation of distributed guided genetic algorithms for max_CSPs [ C ]. In proceedings of the 7th world muhieonference on systemics, Cybernetics and informaties ( SC103 ), Orlando, Florida, USA, 2003.
  • 6Lau T L, Tsang E P K. Solving the radio link frequency assignment problem with the guided genetic algorithm[ C]. In proceedings of NATO symposium on radio length frequency assignment staring and conservation systems, Albrg, Denmark, UK, 1998.
  • 7Rehran C, Heredia F J. Unit commitment by augmented Lagrangian relaxation: testing two decomposition approaches [J]. Journal of Optimization Theory and Applications,2002,112(2):295-314.
  • 8Mahey. Decomposition methods for mathematical programming[M]//Pardalos P, Resende M G C. Handbook of applied optimization. Oxford : Oxford University Press ,2002.
  • 9Engehnann B. Convexification and decomposition of separable problems[ J]. Optimization, 1992,26:61-82.
  • 10Chen G,Teboulle M. A proximal-based decomposition method for convex minimization problems [ J 1- Mathematical Programming, 1993,64:81-101.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部