摘要
用Newton法,无论是解非线性方程,还是进行一维搜索,都只是对函数或导函数进行Taylor展开取一阶近似.为了提高求解效率欲进行高阶展开则遇到了困难:首先,二阶、三阶展开相应地要解二次、三次代数方程,计算较 麻烦;其次.更高阶展开则不可能求解.本文基于反函数的表达,首次提出了任意阶展开的解法,得到显式表达的解.Newton法成为该方法的一个特例.算例表明反函数解法克服了Newton法有时振荡不收敛的弱点.
The Newton method for solving nonlinear equation or implementing one dimensional search is taking first order approximation of the Taylor's expansion of the function or derivitive function. To raise the efficiency of solutions, higher order's expansions of the function or derivitive function should be taken instead of the first one. But they encountered some difficulties. Formulas of the second or the third order's expansions have to be solved in terms of the second or the third order's algebraic equations whose algorithms are troublesome. Equations of more high order's expansions can not be solved. Based on the inverse function o this paper first proposes solutions of arbitrary order's expansions that are explicit formulas. The Newton method becomes a specific case of methods based on inverse functions. Computational examples show that methods of using inverse functions may overcome the weakness of the Newton method whose algorithm is not stable and not convergent sometimes.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
1993年第2期125-129,共5页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目
关键词
非线性方程
反函数
一维搜索
non-linear equations
Newton method /inverse function
one dimensional search The Project Supported by National Natural Science Foundation of China