摘要
The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.
The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.
基金
the National Natural Science Foundation of China(No.19972011)