摘要
In the theory of random fractal, there are two important classes of random sets, one is the class of fractals generated by the paths of stochastic processes and another one is the class of factals generated by statistical contraction operators. Now we will introduce some things about the probability basis and fractal properties of fractals in the last class. The probability basis contains (1) the convergence and measurability of a random recursive setK(ω) as a random element, (2) martingals property. The fractal properties include (3) the character of various similarity, (4) the separability property, (5) the support and zero-one law of distributionP k =P·K ?1, (6) the Hausdorff dimension and Hausdorff exact measure function.
In the theory of random fractal, there are two important classes of random sets, one is the class of fractals generated by the paths of stochastic processes and another one is the class of factals generated by statistical contraction operators. Now we will introduce some things about the probability basis and fractal properties of fractals in the last class. The probability basis contains (1) the convergence and measurability of a random recursive setK(ω) as a random element, (2) martingals property. The fractal properties include (3) the character of various similarity, (4) the separability property, (5) the support and zero-one law of distributionP k =P·K ?1, (6) the Hausdorff dimension and Hausdorff exact measure function.
基金
SupportedbytheNationalNaturalScienceFoundationofChina (10 0 710 5 8 2 )
theFoundationofWuhanUniv