摘要
In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolutional path characterized by the near-isothermal decompression. The inclusion assemblage (Hb+Ep+Bi+Pl+Qz) within garnet and other minerals has recorded a pre-peak stage (Mi) epidote amphibole fades metamorphic event. High- and ultrahigh-pressure peak metamorphism (M2) took place at T=750-860℃ and P>2.7 GPa. The symplectitic assemblages after garnet, jadeitic-clinopyroxene and rutile imply a near-isothermal decompression metamorphism (M3, M4) during the rapid exhumation. Several lines of evidence of petrography and metamorphic reactions indicate that both gneisses and eclogites have experienced ultrahigh-pressure metamorphism in the Donghai area. This research may be of great significance for an in-depth study of the metamorphism and tectonic evolution in the Su-Lu ultrahigh-pressure metamorphic belt.
In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolutional path characterized by the near-isothermal decompression. The inclusion assemblage (Hb+Ep+Bi+Pl+Qz) within garnet and other minerals has recorded a pre-peak stage (Mi) epidote amphibole fades metamorphic event. High- and ultrahigh-pressure peak metamorphism (M2) took place at T=750-860℃ and P>2.7 GPa. The symplectitic assemblages after garnet, jadeitic-clinopyroxene and rutile imply a near-isothermal decompression metamorphism (M3, M4) during the rapid exhumation. Several lines of evidence of petrography and metamorphic reactions indicate that both gneisses and eclogites have experienced ultrahigh-pressure metamorphism in the Donghai area. This research may be of great significance for an in-depth study of the metamorphism and tectonic evolution in the Su-Lu ultrahigh-pressure metamorphic belt.