期刊文献+

A HIGH-ORDER FINITE DIFFERENCE METHOD FOR UNSTEADY CONVECTION-DIFFUSION PROBLEMS WITH SOURCE TERM

A HIGH-ORDER FINITE DIFFERENCE METHOD FOR UNSTEADY CONVECTION-DIFFUSION PROBLEMS WITH SOURCE TERM
原文传递
导出
摘要 The convection and diffusion are the basic processes in fluid flow and heat& mass transfer. The upwind and evolution functions for the convection term are introduced to give a comprehensive transformation to one-dimensional unsteady convection-diffusion equation involving source term. The corresponding compact fourth-order finite difference methed is developed. With the trans formation, the authors overcome the difficultyin dealing with the convection term, and the high-order expression for the convection-diffusion term can be conveniently obtained. The proposed difference scheme with thefourth-order accuracy and unconditional stability can fully reflect the upwind and evolutioneffects of the convection. The calculated results show that the errors of the referencescheme are 600 or 6000 times those of the proposed scheme for the same computationalgrid. With the one time decrease of the space grid, the errors of the proposed scheme andthe reference scheme reduce about 20 times and 2 times respectively. It is evident that theaccuracy of the proposed scheme is remarkably higher than that of the reference scheme. The convection and diffusion are the basic processes in fluid flow and heat& mass transfer. The upwind and evolution functions for the convection term are introduced to give a comprehensive transformation to one-dimensional unsteady convection-diffusion equation involving source term. The corresponding compact fourth-order finite difference methed is developed. With the trans formation, the authors overcome the difficultyin dealing with the convection term, and the high-order expression for the convection-diffusion term can be conveniently obtained. The proposed difference scheme with thefourth-order accuracy and unconditional stability can fully reflect the upwind and evolutioneffects of the convection. The calculated results show that the errors of the referencescheme are 600 or 6000 times those of the proposed scheme for the same computationalgrid. With the one time decrease of the space grid, the errors of the proposed scheme andthe reference scheme reduce about 20 times and 2 times respectively. It is evident that theaccuracy of the proposed scheme is remarkably higher than that of the reference scheme.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 1999年第2期97-102,共6页 水动力学研究与进展B辑(英文版)
关键词 CONVECTION-DIFFUSION compact difference method comprehensive transformation UNSTEADY computational fluid dynamics convection-diffusion, compact difference method, comprehensive transformation, unsteady, computational fluid dynamics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部