期刊文献+

块──Cayley-Hamilton定理的一些新的应用 被引量:1

Some New Applications of the Block-Cayley-Hamilton Theorem
下载PDF
导出
摘要 利用块──Cayley-Hamilton定理得到一类各子块是两两可换的分块阵A的广义逆:加权Moore-Penrose逆、Moore-Penrose逆、Drazin逆及群逆的表达式和计算它们的块有限算法,本算法中需计算一个与给定矩阵的子块同阶的矩阵之逆阵. The Block-Cayley-Hamilton Theorem is utilized to obtain some expressions of theweighted Moore-Penrose inverses, Moore-Penrose inverses, Drazin inverses and group inversesof a class of matrices partitioned into blicks that are commutative in pairs. And the blick finite algorithm for these generalized inverses is also presented. This algorithm only needs to find the inverse of a matrix of the same order as that of the block of the given matrix'
作者 王国荣
出处 《上海师范大学学报(自然科学版)》 1998年第1期8-15,共8页 Journal of Shanghai Normal University(Natural Sciences)
基金 上海高等学校科技发展基金
关键词 块──Cayley-Hamilton定理 子块两可换的分块阵 广义逆 加权MOORE-PENROSE逆 MOORE-PENROSE逆 DRAZIN逆 群逆 块有限算法 Block-Cayley-Hamilton Theorem matrix partitioned into blicks commuting intopans generalized inverse weighted Moors-Penrose inverse Moors-Penrose inverse Drazin inverse group inverse blick finite algorithm
  • 相关文献

同被引文献9

  • 1Dennis J E, Traub J F, Weber R P. The algebraic theory of matrix polynomials[J]. SIAM J Numer Anal,1976, 13;831-845.
  • 2Gellai B. On hypermatrices with block commutable in pqirs in the theory of molecular vibrations[J]. Studia Scientisrum Mathematicarurn Hungrica, 1971,6 : 347-353.
  • 3Vitoria J. A Block-cayley-Hamilton theorem[J].Bulletin Mathematique, 1982,26 (74) :93-97.
  • 4Vitoria J. Some questions of numerical algebra related to differential equations[J]. Colloquia Mathematiea Societatics Sanos Bolyai 50, Numerical Methods, Miskoic, 1980.127-140.
  • 5WEI Yi-min. A characterization and representation of the generalized inverse AT,S^(2) and its applications[J]. Linear Alg Appl,1998,280:87-96.
  • 6Wang Guorong, Wei Yimin, Qiao Sangzhen. Generalized Inverses: Theory and Computations[M]. Science Press, Beijing, 2004.
  • 7Liu Yonghui, Wei Musheng. Rank equalities related to the generalized inverse AT,S(2) and BT1,S1(2) of two matrices A and B[J].Appl Math Comput,2004,159:19-28.
  • 8Ingraham M H. A note on determinants [J].Bull Amer Math Soc, 1937,43:379-580.
  • 9Penrose R. A generalized inverse for matrices[J].Proc Cambridge Philos Soc, 1955,51:406-413.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部