摘要
By using the Ito's calculus, a law of the iterated logarithm is established for the processes with independent increments (PⅡ). Let X = {Xt, t ≥ 0} be a PII with Ext=0,V(t)=Ext2<∞and limt∞V(t)=∞ If one of the following conditions is satisfied,(2) Suppose the Levy's measure of X may be written as v(dt,ds) = Ft(dx) dV(t) and there is a σ-finite measure G such tnat ,
By using the Ito's calculus, a law of the iterated logarithm is established for the processes with independent increments (PⅡ). Let X = {Xt, t ≥ 0} be a PII with Ext=0,V(t)=Ext2<∞and limt∞V(t)=∞ If one of the following conditions is satisfied,(2) Suppose the Levy's measure of X may be written as v(dt,ds) = Ft(dx) dV(t) and there is a σ-finite measure G such tnat ,