期刊文献+

A NUMERICAL STUDY FOR MECHANISM OF THE EFFECT OF NORTHERN SUMMER ARCTIC ICE COVER ON THE GLOBAL SHORTRANGE CLIMATE CHANGE 被引量:3

A NUMERICAL STUDY FOR MECHANISM OF THE EFFECT OF NORTHERN SUMMER ARCTIC ICE COVER ON THE GLOBAL SHORTRANGE CLIMATE CHANGE
下载PDF
导出
摘要 In terms of nine-layer global spectral model involving fuller parameterization of physical process,with a rhomboidal truncation at wavenumber 15,experiments are conducted by virtue of two numerical schemes,one with long-range mean coverage of Arctic ice,and the other with supercooled water at the same temperature as the ice,fol- lowed by an analysis of the difference field simulated by the two schemes.Results show that(1)the impact of Arctic ice on the northern short-range climate is realized through the change in polar ice coverage to cause local temperature change in the polar region to set up gradient difference in temperature from north to south,thus affecting the atmospher- ic circulations and,on the other hand,two trains of two-dimensional Rossby waves excited by the atmospheric heat source anomaly have impacts on the Northern Hemisphere(NH)extratropical region,one of which is similar to the JP teleconnection pattern first presented by Nitta(1987);(2)The significant impact of Arctic ice anomaly on the southern short-range climate change is accomplished with the aid of the anomaly of the equatorial heat source that excites a two- dimensional Rossby wavetrain propagating along a great circle route into the Southern Hemisphere(SH)extratropics, and the cross-equatorial propagation of the NH wavetrain also has effects on the SH atmosphere.Simulation indicates that with the 15-day integration the Arctic ice exerts an influence mainly on the NH and when the model atmosphere is getting stabilized,the effect is dominantly on the SH short-range climate change. In terms of nine-layer global spectral model involving fuller parameterization of physical process,with a rhomboidal truncation at wavenumber 15,experiments are conducted by virtue of two numerical schemes,one with long-range mean coverage of Arctic ice,and the other with supercooled water at the same temperature as the ice,fol- lowed by an analysis of the difference field simulated by the two schemes.Results show that(1)the impact of Arctic ice on the northern short-range climate is realized through the change in polar ice coverage to cause local temperature change in the polar region to set up gradient difference in temperature from north to south,thus affecting the atmospher- ic circulations and,on the other hand,two trains of two-dimensional Rossby waves excited by the atmospheric heat source anomaly have impacts on the Northern Hemisphere(NH)extratropical region,one of which is similar to the JP teleconnection pattern first presented by Nitta(1987);(2)The significant impact of Arctic ice anomaly on the southern short-range climate change is accomplished with the aid of the anomaly of the equatorial heat source that excites a two- dimensional Rossby wavetrain propagating along a great circle route into the Southern Hemisphere(SH)extratropics, and the cross-equatorial propagation of the NH wavetrain also has effects on the SH atmosphere.Simulation indicates that with the 15-day integration the Arctic ice exerts an influence mainly on the NH and when the model atmosphere is getting stabilized,the effect is dominantly on the SH short-range climate change.
出处 《Acta meteorologica Sinica》 SCIE 1992年第1期15-24,共10页
关键词 polarice wavetrain short-term climatic change influence mechanism polarice wavetrain short-term climatic change influence mechanism
  • 相关文献

同被引文献17

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部