期刊文献+

ZSM方程和CDGSK方程的无穷Lie-Bācklund对称序列之间的联系

CONNECTION BETWEEN THE INFINITE SEQUENCE OF LIE-B(?)CKLUND SYMMETRIES OF THE ZSM AND CDGSK EQUATIONS
下载PDF
导出
摘要 本文证明,Caudrey-Dodd-Gibbon-Sawada-Kotera方程和Ziber-Shabat-Mikhailov方程的无穷Lie-Bācklund对称序列之列之间存在着一个简单的联系.这一联系是由这样的观察事实所提供的:Ziber-Shabat-Mikhailov 方程和被积修正Caudery-Dodd-Gibbon-Sawada-Kotera 方程的无穷Lie-Bācklund 对称序列是全同的.此外,我们还证明,这一联系是与如下的事实相关的:所有这些方程(包括Cau-drey-Dodd-Gibbon-Sawada-Kotera(cDGSK)方程,修正Caudrey-Dodd-Gibbon-Sawada-Kotera(MCDGSK)方程,被积修正Caudrey-Dodd-Gibbon-Sawada-Kotera(IMCDGSK)方程和Ziber-Shabat-Mikhailov(ZSM)方程)的无穷多守恒律可以变换成同一组具有零Poisson 括号的Virasoro 生成元的多项式函数的无穷集. It is shown that there exists a simple connection between the infinite sequence of Lie-Bācklund symmetries(written in the form of evolution equations)of the Caudrey-Dood-Gibbon-Sawada-Kotera and the Ziber-Sha-bat-Mikhailov equations.This connection is provided by tbe observation that the infinite sequence of Lie-Back-lund symmetries of the Ziber-Shabat-Mikhailov and the integrated modified Caudrey-Dodd-Gibbon-Sawaba-Kotera equations are identical.Furher,this connection is shown to be related with the fact that infinite conser-vation laws in all these equations are transformed into the same infinite sequence of polynomial functions ofthe Virasoro generators with vanishing poisson brackets;among these are the Caudrey-Dodd-Gibbon-Sawada-Kotera(CDGSK)equation,the modified Caudrey-Dodd-Gibbon-Sawada-Kotera(MCDGSK),the integratedmodified Caudrey-Dodd-Gibbon-Sawada-Kotera and the Ziber-Shabat-Mikhailov(ZSM)equation.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1992年第3期62-73,共12页 Journal of Sichuan Normal University(Natural Science)
关键词 Lie-Bācklund对称 Virasoro生成元 POISSON括号 Ziber-Shabat-Mikhailov方程 Caudrey-Dodd-Gibbon-Sawada-Kotera 方程 Lie-Backlund symmetry Virasoro generators Poisson brackets Ziber-Shabat-Mikhailov equation Caudrey-Dodd-Gibbon-Sawada-Kotera equation
  • 相关文献

参考文献33

  • 1韦联福,刘玉斌,江林杰.与Ito方程相关的扩展Virasoro代数[J].四川师范大学学报(自然科学版),1990,13(3):26-28. 被引量:1
  • 2Allan P. Fordy,John Gibbons.Integrable nonlinear Klein-Gordon equations and Toda lattices[J]. Communications in Mathematical Physics . 1980 (1)
  • 3K. Pohlmeyer.Integrable Hamiltonian systems and interactions through quadratic constraints[J]. Communications in Mathematical Physics . 1976 (3)
  • 4Saski R,Bullough R K.Proc R Soc. London Journal . 1981
  • 5Case K M,Ross A M. Journal of Mathematical Physics . 1982
  • 6Lakshmanan M. Physics Letters . 1977
  • 7Orfadinis S J. Physical Review . 1980
  • 8Honerkamp J. Journal of Mathematical Physics . 1981
  • 9Gerdjikov V S,Yaanoski A. Physics Letters . 1984
  • 10Caudery P J,Dodd R K,Gibbon J D. Proceedings of the Royal Society of London . 1976

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部