摘要
以地震反演为主,结合测井、岩石物理、地震相和正演模拟等技术综合研究火成岩的速度场特征。岩石物理实验是研究火成岩物性参数有效的工具,实验数据的分析能帮助预测火成岩岩性和速度信息,为反演等工作利用地震资料描述火成岩提供依据。原始测井曲线的环境校正和标准化处理是高品质合成记录和反演效果的前提条件。稀疏脉冲反演、基于模型的反演和神经网络反演这三种方法结果的分辨率较原始地震数据有了很大提高,从中可识别出火成岩的空间展布,但基于模型的反演分辨率相对较高。伽马属性反演的分辨率在识别火成岩方面比上述三种方法要高得多,但是单一的属性又很难满足火成岩特征描述的要求,因此多参数融合是一种行之有效的方法。结合地震相的应用,最终得到符合地质特征的火成岩三维速度场,并通过误差分析和正演模拟验证了速度场精度,为变速度成图和低幅构造勘探提供了科学的依据。
In this paper,the seismic inversion combined with the well logging,rock physics,seismic facies and the forward modeling was used to comprehensively study the characteristics of the igneous rocks. The rock physics experiment is a useful tool to study the physical property parameters of the igneous rocks. The analysis of the experimental data is helpful to predicting the igneous lithology and velocity. On such a basis,the seismic inversion is used to describe the igneous rocks by the seismic data. The environmental correction and standardization of the original logging curves is the prerequisite for high quality synthetic seismogram and inversion. The constrained sparse spike inversion,the model based inversion and the neural network inversion have higher resolution than the original seismic data. The spatial distribution of igneous rocks can be identified by them,with the model based inversion having the highest resolution. The GR characteristic inversion has higher resolution than the above-mentioned three methods. However,as a single characteristic can hardly be used to describe the characteristics of igneous rocks,the multi-parameter seismic inversion is an efficient way. The seismic facies is also used to obtain the igneous 3D velocity field. The precision of the velocity field is verified by the error analysis and forward modeling.
出处
《物探与化探》
CAS
CSCD
2013年第6期1071-1079,共9页
Geophysical and Geochemical Exploration
基金
国家重点基础研究发展计划(973)(2009CB219603)
国家科技重大专项(2011ZX05001-002-003
2011ZX05008-006)
江苏高校优势学科建设工程资助项目(PAPD)联合资助
关键词
岩石物理实验
环境校正和标准化处理
地震反演
地震相
三维速度场
rock physics experiment
environmental correction and standardization
seismic inversion
seismic facies
3D velocity field