期刊文献+

一类非完整约束运动传递机构的动力学建模及仿真 被引量:4

Dynamic modeling and simulation of a nonholonomic constraint motion transmission mechanism
下载PDF
导出
摘要 摩擦圆盘运动传递机构是一类新型的非完整机构,分析其动力学特性可以进一步优化结构设计,实现系统的精确控制。本文在研究其非完整约束特性的基础上,利用Lagrange方法建立了其动力学模型,并结合计算机仿真技术,对其转动角为正弦运动时各转轴上的力矩进行仿真分析,仿真结果显示该机构的结构参数合理,能够保证力矩不至过大,而且力矩曲线较平滑,具有良好的动态特性。 The friction disk motion transmission mechanism is a novel nonholonomic mechanism. The structure parameters can be optimized through dynamic analysis, so as to obtain accurate control of the system. Based on nonholonomic constraint features, dynamic model is derived by using the Lagrange method. Then, combined with computer simulation technology, torque on the axes were simulated while its movement is trajectory of the sine curve. Simulation results show that the pre-set structural parameters are reasonable, guarantee a smooth torque curve and good dynamic characteristics, and also avoid too large torque.In a word, this mechanism has good dynamic characteristics.
出处 《新型工业化》 2013年第9期42-46,共5页 The Journal of New Industrialization
基金 高校博士点科研专项基金(20100143110012)
关键词 非完整机构 动力学 LAGRANGE方法 Nonholonomic mechanism Dynamic Lagrange method
  • 相关文献

参考文献8

  • 1松野文俊;田中基康.非ホロノミツク機械システムの制御[J](日本)计测と制御,2006(07):626-631.
  • 2何广平,谭晓兰,张向慧.双臂弹性单腿机器人的垂直跳跃控制[J].机械工程学报,2007,43(5):44-49. 被引量:3
  • 3Shinkichi Inagaki,Tatsuya Suzuki,Takahiro Ito. Design of Man-Machine Cooperative Nonholonomic Two-Wheeled Vehicle Based on Impedance Control and Time-State Control[A].{H}Kobe,Japan,2009.3768-3773.
  • 4Woojin Chung,Yoshihiko Nakamura. Design of the Chained Form Manipulator[A].New Mexico,1997.455-461.
  • 5孙汉旭,王亮清,贾庆轩,刘大亮.BYQ-3球形机器人的动力学模型[J].机械工程学报,2009,45(10):8-14. 被引量:22
  • 6谭跃刚.基于非完整约束的欠驱动机械手及其运动控制的研究[D]{H}武汉:武汉理工大学,2005.
  • 7李中华;贺春辉.一种带有启发式社会学习机制的人工免疫系统[J]新型工业化,2012(10):42-50.
  • 8宋佐时,易建强,赵冬斌,李新春.基于MATLAB的非完整动力学系统跟踪控制的动态仿真[J].系统仿真学报,2004,16(7):1433-1436. 被引量:7

二级参考文献26

  • 1HeGuangping,LuZhen.SELF-RECONFIGURATION OF UNDERACTUATED REDUNDANT MANIPULATORS WITH OPTIMIZING THE FLEXIBILITY ELLIPSOID[J].Chinese Journal of Mechanical Engineering,2005,18(1):92-97. 被引量:4
  • 2胡跃明,用其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10. 被引量:26
  • 3邓宗全,岳明,禹鑫燚,方海涛.球形运动器动力学分析及控制系统设计[J].机器人,2006,28(6):565-570. 被引量:11
  • 4HALME A,SCHONBERG T,WANG Y.Motion control of a spherical mobile robot[C]// Proceedings of 4th International Workshop on Advanced Motion Control,March 18-21,1996,Mie University Tsu-city,Mie-Pref,Japan.Mie:AMC,1996:259-264.
  • 5BICCHI A,BALLUCHI A,PRATTICHIZZO D,et al.Introducing the "SPHERICLE":An experimental testbed for research and teaching in nonholonomy[C]// Proceedings of the 1997 IEEE International Conference on Robotics and Automation,April 20-25,1997,Albuquerque,New Mexico,USA.New Jersey:IEEE,Piscataway,1997:2 620-2 625.
  • 6CAMICIA C,CONTICELLI F,BICCHI A.Nonholonomic kinematics and dynamics of the sphericle[C]// Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems,October 31-November 5,2000,Takamatsu,Japan.New York:IEEE,2000:805-810.
  • 7ZHAN Qiang,ZHOU Tingzhi,CHEN Ming,et al.Dynamic trajectory planning of a spherical mobile[C]// 2006 IEEE Conference on Robotics,Automation and Mechatronics,June 7-9,2006,Bangkok,Thailand.New Jersey:IEEE,2006:1-6.
  • 8[2]Barraquand J,Latombe J.Nonholonomic Multibody Mobile Robots: Controllability and Motion Planning in the Presence of Obstacle[A].Proceedings of International Conference on Robotic and Automation[C].Sacramento: CA.1991.2328-2335.
  • 9[3]Brockett W,Millman R.Differential Geometric Control Theory[M].Boston:Birkhauser,1983.181-208.
  • 10[4]Bloch,A ,McClamroch ,N.H.Control of Mechanical Systems with Classical Nonholonomic Constraints[A].Proceedings of 28th IEEE Conference on Decision and Control[C].Florida:Tampa.1989.201-205.

共引文献29

同被引文献56

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部