期刊文献+

基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究 被引量:14

Gearbox state identification and remaining useful life prediction based on MoG-HMM
下载PDF
导出
摘要 提出了基于混合高斯隐马尔可夫模型的齿轮箱状态识别与剩余使用寿命预测新方法。建立了基于聚类评价指标的状态数优化方法,通过计算待识别特征向量的概率值来识别齿轮箱当前状态。在状态识别的基础上,提出了剩余使用寿命计算方法。最后,利用齿轮箱全寿命实验数据进行验证,结果表明,该方法可以有效的识别齿轮箱状态并实现了剩余使用寿命预测,平均预测正确率为90.94%,为齿轮箱的健康管理提供了科学依据。 A new approach for state recognition and remaining useful life(RUL) prediction based on Mixture of Gaussians Hidden Markov Model(MoG-HMM) was presented.The state number optimization method was established based on cluster validity measures.One can recognize the state through identifying the MoG-HMM that best fits the observations.Then,the RUL prediction method was presented on the recognition base.Finally,the data of a gearbox's full life cycle test was used to demonstrate the proposed methods.The results show that the mean accuracy of prediction is 90.94%.
机构地区 军械工程学院 [ [
出处 《振动与冲击》 EI CSCD 北大核心 2013年第15期20-25,31,共7页 Journal of Vibration and Shock
关键词 混合高斯隐马尔可夫模型 剩余使用寿命预测 状态识别 MoG-HMM remaining useful life prediction state recognition
  • 相关文献

参考文献9

  • 1Boutros T,Liang M. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models[J].Mechanical Systems and Signal Processing,2011.2102-2124.
  • 2Lee J M,Kim S J,Hwang Y. Diagnosis of mechanical fault signals using continuous hidden Markov model[J].Journal of Sound and Vibration,2004.1065-1080.
  • 3Purushotham V,Narayanan S,Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition[J].NDT & E International,2005,(8):654-664.doi:10.1016/j.ndteint.2005.04.003.
  • 4滕红智,赵建民,贾希胜,张星辉,王正军.基于CHMM的齿轮箱状态识别研究[J].振动与冲击,2012,31(5):92-96. 被引量:21
  • 5Dong M,He D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology[J].Mechanical Systems and Signal Processing,2007,(5):2248-2266.doi:10.1016/j.ymssp.2006.10.001.
  • 6Zhou Z J,Hu C H,Xu D L. A model for real-time failure prognosis based on hidden Markov model and belief rule base[J].European Journal of Operational Research,2010.269-283.
  • 7Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M].Plenum Press,1981.
  • 8Bensaid A M,Hall L O,Bezdek J C. Validity-guided (Re) clustering with applications to image segmentation[J].IEEE Transactions on Fuzzy Systems,1996.112-123.
  • 9Xie X L,Beni G. A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,(08):841-847.doi:10.1109/34.85677.

二级参考文献8

  • 1柳新民,邱静,刘冠军.基于连续高斯密度混合HMM的滚动轴承故障诊断研究[J].机械传动,2005,29(1):7-10. 被引量:5
  • 2宋雪萍,马辉,毛国豪,闻邦椿.基于CHMM的旋转机械故障诊断技术[J].机械工程学报,2006,42(5):126-130. 被引量:12
  • 3Bunks C, McCarthy D, A1-Ani T. Condition-based mainte- nance of machines using hidden Markov models [ J]. Mechani- cal Systems and Signal Processing, 2000, 14 (4) : 597 -612.
  • 4Ertunc H M, Loparo K A. A decision fusion algorithm for tool wear condition monitoring in drilling[J]. International Journal of Machine Tools and Manufacture,2001,41 : 1347 - 1362.
  • 5Carey B,Dan M. Condition based maintenance of machines u- sing Hidden Markov Models [J].Mech. Syst. Sig. Proc., 2000, 14, 597-612.
  • 6Ying J, Kirubarajan T. A hidden Markov-based algorithm for fault diagnosis with partial and imperfect tests[J]. IEEE Trans On System Man and Cybernetics,2000,30(4) :463 -473.
  • 7Chinnam R B. HMMs for diagnostics and prognostics in machi- ning processes [J].International Journal of Production Re- search, 2005 : 1275 - 1293.
  • 8Murphy K P. Dynamic bayesian networks: representation, In- ference and learning[ D]. UC Berkeley,2002.5.

共引文献20

同被引文献123

引证文献14

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部