期刊文献+

一种基于RDB中自身连接的Web服务聚类方法 被引量:4

A Web Service Clustering Method Based on Self-Join in RDB
下载PDF
导出
摘要 如何快速准确地找到用户所需的Web服务是面向服务的软件工程时代中亟待解决的关键问题之一,通过对服务进行聚类是解决该问题的方式之一.为了提高服务聚类的效率和准确率,在存储Web服务相关信息的基础上,从服务的接口(输入和输出)和能力(前置和后置条件)两个方面,利用本体概念间的语义推理关系以及概念的状态路径等信息进行计算,设计了一种基于关系数据库(relational database,RDB)中自身连接的快速准确实施Web服务聚类的方法.该方法可以提高计算服务间相似度的效率,对服务进行聚类形成不同的服务类簇,进而提高服务查找的效率,并通过实验验证了所提出方法的有效性. How to discover the services quickly and accurately to meet user's requirements is a key problem to be solved in the era of service-oriented software engineering(SOSE).Service clustering is a kind of methods that can solve this problem.In order to enhance service clustering efficiency and accuracy,it proposes a service clustering method based on the self-join operation in relational database(RDB).On the basis of storing service information,it uses the information of semantic reasoning relationship between concepts and the concept status path to do the calculation.And the information of service interface and capability are considered.This approach can enhance the efficiency of calculating service similarity.Services are clustered to form different service clusters,and thus the service discovery efficiency can be enhanced in further.The effectiveness of the proposed method is validated through experiments.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第S1期205-210,共6页 Journal of Computer Research and Development
基金 华中农业大学新进博士科研启动专项基金项目(52902-0900206081 52902-0900206084) 武汉大学软件工程国家重点实验室开放研究基金项目(SKLSE2012-09-24) 中央高校基本科研业务费专项基金项目(2013QC020)
关键词 聚类 语义推理 WEB服务 关系数据库 本体 clustering semantic reasoning Web service relational database(RDB) ontology
  • 相关文献

参考文献1

二级参考文献20

  • 1吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 2邝砾,邓水光,李莹,吴健,吴朝晖.使用倒排索引优化面向组合的语义服务发现[J].软件学报,2007,18(8):1911-1921. 被引量:24
  • 3Stollberg M, Hepp M, Hoffmann J. A caching mechanism for semantic Web service discovery//Proceedings of the 6th International Semantic Web Conference. Busan, Korea, 2007, 480-493
  • 4Chen Y, Cohen B. Data mining and service rating in Serviceoriented architectures to improve information sharing//Proceedings of the 2005 IEEE Conference on Aerospace. Montana, USA, 2005:1-11
  • 5Lee S Y, Lee J Y, Lee B Il. Service composition techniques using data mining for ubiquitous computing environments. International Journal of Computer Science and Network Security, 2006, 6(9): 110-117
  • 6Sudha Rajagopal, Thamarai Selvi S. Semantic grid service discovery approach using clustering of service ontologies// Proceedings of IEEE TENCON 2006. Hong Kong, China, 2006:1-4
  • 7Ram Sudha, Hwang Yousub, Zhao Huimin. A clustering based approach for facilitating semantic Web service discovery// Proceedings of the 15th Annual Workshop on Information Technologies & Systems. Las Vegas, USA, 2006:1-6
  • 8Nayak R, Lee B. Web service discovery with additional semantics and elustering//Proeeedings of the IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC, 2007: 555-558
  • 9Paolucci M, Kawamura T, Payne T R et al. Semantic matching of Web service capabilities//Proceedings of the 1st International Semantic Web Conference. Sardinia, Italia, 2002:333-348
  • 10Meditskos G, Bassiliades N. Object-oriented similarity measures for semantic Web service matehmaking//Proceedings of 5th European Conference on Web Services. Halle, Germany, 2007:74-85

共引文献62

同被引文献46

  • 1刘云峰 ,齐欢 ,HU Xiang'en ,CAI Zhiqiang ,代建民 .基于潜在语义空间维度特性的多层文档聚类[J].清华大学学报(自然科学版),2005(S1):1783-1786. 被引量:11
  • 2郭景峰,赵玉艳,边伟峰,李晶.基于改进的凝聚性和分离性的层次聚类算法[J].计算机研究与发展,2008,45(z1):202-206. 被引量:15
  • 3陈德伟,许斌,蔡月茹,李涓子.服务部署与发布绑定的基于P2P网络的Web服务发现机制[J].计算机学报,2005,28(4):615-626. 被引量:46
  • 4Giatsoglou M,Vakali A.Capturing social data evolution using graph clustering[J].IEEE Internet Computing,2013,17(1):74-79.
  • 5Papalexakis E E,Sidiropoulos N D,Bro R.From K-means to higher-way co-clustering:multilinear decomposition with sparse latent factors[J].IEEE Transactions on Signal Processing,2013,61(2):493-506.
  • 6Dietze S,Sanchez-Alonso S,Ebner H,et al.Interlinking educational resources and the web of data:a survey of challenges and approaches[J].Program:Electronic Library and Information Systems,2013,47(1):60-91.
  • 7Chen C Q.Analysis of Web log data mining based on improved fuzzy clustering algorithm[J].Advanced Materials Research,2013,760:1896-1901.
  • 8Fan W,Bouguila N,Ziou D.Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(7):1670-1685.
  • 9Rana S,Jasola S,Kumar R.A boundary restricted adaptive particle swarm optimization for data clustering[J].International Journal of Machine Learning and Cybernetics,2013,4(4):391-400.
  • 10Krishnasamy G,Kulkarni A J,Paramesran R.A hybrid approach for data clustering based on modified cohort intelligence and K-means[J].Expert Systems with Applications,2014,41(13):6009-6016.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部