期刊文献+

病房巡视机器人复杂环境下的避障技术研究 被引量:3

Research on obstacles avoidance for ward inspection robot in complex environment
原文传递
导出
摘要 针对医院病房巡视机器人的工作环境复杂多变、障碍物形状各异的特点,提出了一种基于视觉-激光传感器的障碍物检测方法.通过视觉获得障碍物的大小、远近信息.结合激光传感器对环境的感知能力,构建虚拟障碍物,并形成避障策略关键字.通过查询避障策略表,实现病房巡视机器人在复杂环境下的安全避障功能.实验结果验证了该方法的有效性. Considering of the working environment of ward inspection robot is complex and the obstacles have different kinds of shapes,a new method based on the vision-laser sensors to detect the obstacles was proposed.Firstly,a camera installed on the ward inspection robot was used to obtain the information of obstacles,such as the size of obstacles and the distance between the robot and obstacles. Then,a virtual obstacle was constructed using the information which was collected by laser radar and the camera.Obstacle avoidance strategies were built based on the position of the virtual obstacles.Finally,the ward inspection robot could realize obstacle avoidance safely and easily by querying the obstacle avoidance strategies.Experimental results verify the effectiveness of the proposed method.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S1期312-315,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61075092) 山东省自然科学基金资助项目(ZR2011FM011) 山东大学自主创新基金资助项目(2011JC01)
关键词 移动机器人 避障 病房巡视 激光雷达 视觉测距 虚拟障碍 mobile robot obstacles avoidance ward inspection laser radar vision distance measuring virtual obstacles
  • 相关文献

参考文献5

二级参考文献31

  • 1宋晓峰,谈士力.微型机器人的发展和研究现状[J].机床与液压,2004,32(8):1-2. 被引量:13
  • 2王辉,邹伟,郑睿.基于视觉的移动机器人实时障碍检测研究[J].计算机工程与应用,2005,41(25):46-48. 被引量:10
  • 3刘术,蒋铭敏.美军机器人手术的研究现状及发展趋势[J].中国微创外科杂志,2007,7(6):567-569. 被引量:7
  • 4韩雯,常钧.现代康复工程的发展概述[J].医疗装备,2007,20(4):13-15. 被引量:11
  • 5GOLDBERG S B,MAIMONE M W,MATTHIES L Stereo vision and rover navigation software for planetary Exploration [C ]//Proc of IEEE A-erospace Conference. Big Sky, Montana: [ s.n. ], 2002.
  • 6N.Otsu. A Threshold Selection Method from Gray-Level Histogram. IEEE Trans. Systems, Man, and Cybemetics, vol., 1978( 8 ) : 62--66.
  • 7章毓晋著.图像工程(中册)[M].北京:清华大学出版社,2005.
  • 8Harris C G,Stephens M J. A Combined Comer and Edge Detector [C]//Proceedings of the 4th Alvey Vision Conference Manchester,England: [s.n], 1988.
  • 9Zhengyou Z.A Flexible New Technique for Camera Calibra -tion. IEEE Transactions on Patte-rn Analysis and Machine Intelligence,2000,22( 11 ): 1330--1334.
  • 10Khatib O. Read-time obstacle avoidance for manipulators and mobile robots[ A]. Proceedings of IEEE International Conference on Robotics and Automation[ C]. Piscataway, USA: IEEE, 1985. 500 - 505.

共引文献124

同被引文献32

  • 1李云翀,何克忠.基于激光雷达的室外移动机器人避障与导航新方法[J].机器人,2006,28(3):275-278. 被引量:33
  • 2肖晓明,胡华梅,蔡自兴,王璐.基于自适应分割和立体视觉的快速障碍检测[J].计算机应用研究,2007,24(9):182-184. 被引量:1
  • 3Discant A, Rogozan A, Rusu C, et al. Sensors for obstacle de- tection-a survey [ C ]//Proc of 30th int spring semin electron technol. E s. 1. ]:E s. n. ] ,2007:100-105.
  • 4Han J, Shao L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor:a review[J].IEEE Trans on Cybem, 2013,43(5) :1318-1334.
  • 5Maier D, Stachniss C, Bennewitz M. Vision- based humanoid navigation using self- supervised obstacle detection [ J ] Int Journal of Humanoid Robotics ,2013,10 (2) : 1-28.
  • 6Wang Z,Liu H,Qian Y L. Real-time plane segmentation and obstacle detection of 3D point clouds for indoor scenes[ C ]// Proceedings of European conference on computer vision work- shops and demonstrations. Berlin:Springer,2012:22-31.
  • 7Choi J, Kim D, Yoo H, et al. Rear obstacle detection system based on depth from Kinect [ C ]//Proc of 15th international IEEE conference on intelligent transportation systems. [ s. 1. ] :IEEE,2012:98-101.
  • 8Khan A, Moideen F, Lopez J, et al. KinDectect: Kinect detec- ting objects [ C ]//Proc of ICCHP. Berlin : Springer, 2012 : 588 -595.
  • 9Labayrade R, Aubert D, Tarel J P. Real time obstacle detection in stereovision on non flat road geometry through "v-dispari- ty" representation[ C ]//Proc of IEEE intelligent vehicle sym- posium. [ s. 1. ] : IEEE,2002:646-651.
  • 10张博翰,蔡志浩,王英勋.电动VTOL飞行器双目立体视觉导航方法[J].北京航空航天大学学报,2011,37(7):882-887. 被引量:14

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部