期刊文献+

模型预测前向神经网络算法及其在组合导航中的应用 被引量:6

Feed-forward neural network algorithm based on model predictive filtering and its application in integrated navigation
下载PDF
导出
摘要 针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05 m/s,+0.05 m/s]和[-5 m,+5 m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。 In view that the uncertainty of system errors may reduce the filtering precision or cause the problem of filter divergence, this paper proposes a novel feed-forward neural network algorithm based on model predictive filtering. First, a model predictive filtering (MPF) is used to estimate the neural network model errors in the forward transfer process and revise it to resist the impact on weights updating. Then, the MPF is used to provide accurate learning samples to neural network for approximating the nonlinear relationship. Finally, the proposed algorithm is applied to the SINS/CNS/BDS (SINS/celestial navigation system/BeiDou navigation satellite system) integrated navigation system and compared with extended Kalman filter (EKF). Simulation results demonstrate that the attitude angle error, velocity error and position error obtained by the improved neural network algorithm are within [-0.25', +0.25'], [-0.05 m/s, +0.05 m/s] and [-5 m, +5 m], respectively, and the filtering performance is significantly superior to that of the EKF. The results show that the proposed algorithms effectively improve the positioning precision of the navigation system.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2014年第2期221-226,共6页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(61174193) 中国航天科技集团公司卫星应用研究院开放基金资助
关键词 前向神经网络 模型预测滤波 权值修正 SINS/CNS/BDS组合导航 Algorithms   Extended Kalman filters   Navigation systems
  • 相关文献

同被引文献55

  • 1马野,王孝通,戴耀.基于UKF的神经网络自适应全局信息融合方法[J].电子学报,2005,33(10):1914-1916. 被引量:16
  • 2Aboelmagd N, Ahmed E, Mohamed B. GPS/INS Integration Utilizing Dynamic Neural Networks for Vehicular Navigation [ J ]. Information Fusion, 2011, 12(1) : 48-57.
  • 3Alsmadi M K, Noah S A. Back Propagation Algorithm: The Best Algorithm among the Multi-Layer Perceptron Algorithm [ J ]. In- ternational Journal of Computer Science and Network Security, 2009, 9(4) :378-383.
  • 4Hamid M, Nitin K T. Cascading Artificial Neural Networks Optimized by Genetic Algorithm and Integrated with Global Naviga- tion Satellite System to Offer Accurate Ubiquitous in Urban Environment [ J ]. Computers, Environment and Urban Systems, 2013, 37(1) : 35-44.
  • 5Azami H, Sanei S, Mohammadi K. Improved the Neural Network Training for Face Recognition Using Adaptive Learning Rate, Resilient Back Propagation and Conjugate Gradient Algorithm[ J]. Journal of Computer Applications, 2011, 34(2) : 22-26.
  • 6Daniel J S. Training Radial Basis Neural Networks with the Extended Kalman Filter[ J ]. Neurocomputing, 2002, 48 (1/2/3/4) : 455-475.
  • 7Wen Y. Nonlinear System Identification Using Discrete-Time Recurrent Neural Networks with Stable Learning Algorithm [ J ]. In- formation Science, 2004, 158:131-147.
  • 8Yang Y, Xu T. An Adaptive Kalman Filter Based on Sage Windowing Weights and Variance Component[ J]. The Journal of Navi- gation, 2003, 56(2): 231-240.
  • 9Luengo J, Garcia S, Herrera E A study on the use of imputation methods for experimentation with radial basis function network classifiers handing missing attribute values: The good synergy between RBFNs and EventCovering method[J]. Neural Networks, 2010, 23(3): 406-418.
  • 10Ferrari S, Bellocchio E Puri V, et al. A hierachical RBF online learning algorithm for real-time 3-D scanner[J]. IEEE Trans on Neural Networks, 2010, 21(2): 275-285.

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部