摘要
MEMS惯组以其体积小、成本低、可靠性高在强冲击环境中得到越来越广泛的应用。为解决基于石英微陀螺和硅微加速度计的MEMS惯组抗高g值冲击问题,提出了一种内减振抗冲击设计方法。在该设计方法中,将陀螺与加速度计嵌入式安装在对称六面体框架结构上,并通过粘接在六面体框架八个顶点的24块粘弹性阻尼减震器与惯组基体隔离,实现内减振。同时基于弹簧阻尼系统理论建立了MEMS惯组抗冲击等效数学模型,对模型进行了仿真分析。利用有限元分析软件ANSYS对三维结构模型进行了模态分析和冲击仿真分析,并通过结构扫频实验与9次5000g冲击谱试验进行了验证。仿真分析与试验结果证明了该方法的有效性及可行性。
MEMS IMU is used widely in high-g shock environment for its small volume, low cost and high reliability. MEMS IMU based on quartz gyro and silicon accelerometer need to be protected in high-g shock environment. To solve the anti-shock problem, an inner damping method is introduced. Gyros and accelerometers are embedded in the symmetrical hexahedron frame. The frame is isolated from IMU base by 24 viscoelastic damping materials felted on the frame culmination. Anti-shock math model is built and simulated based on spring-damper system theory. Mode analysis and shock spectrum response analysis of 3-D structure are simulated based on ANSYS finite element. Structure frequency experiment and nine 5000g SRS experiments are implemented. The result of simulation and experiment validate the effectiveness and feasibility of this method.
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2014年第3期404-408,共5页
Journal of Chinese Inertial Technology
基金
总装十二五预研项目(51309010401)
关键词
石英陀螺
MEMS惯组
弹簧阻尼系统
高G值
冲击
Accelerometers
Damping
Experiments
Gyroscopes
Interactive computer systems
Mathematical models
Quartz