期刊文献+

基于盲源分离的脊柱波提取方法 被引量:1

Extraction of spine wave from walking acceleration using blind source separation
下载PDF
导出
摘要 传感器的位置和方向对行人惯性导航的定位算法选择和定位结果有重要的影响。针对传感器位置和轴向不固定引起的步伐探测失真,引入重力轴拟合和盲源分离算法,提取出行走过程中反应脊柱运动的脊柱波。实验表明,在四种常见姿态下,以脊柱波代替单轴向加速度波进行步伐探测,可将错误率稳定在5%以下。 In pedestrian inertial navigation, a sensor’s position and direction have significant influence on the location algorithm’s selection and location results. In view of the pace detection distortion caused by the unfixed position and direction of the sensor, a blind source separation algorithm was investigated to extract the walking acceleration for gait detection. Firstly, the acceleration from triaxial accelerometer was processed by gravity axis fitting. Secondly, the spine wave, which reflects the acceleration of spine, was extracted by blind source separation. Experiment results show that the error rate under 5%and stronger suitability can be obtained by treating spine wave as input source of pedometer.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2014年第4期426-431,共6页 Journal of Chinese Inertial Technology
基金 国家863资助项目(2013AA12A201) 江苏省高校优势学科建设工程资助项目
关键词 重力轴 行人惯性导航 脊柱波 盲源分离 Algorithms Inertial navigation systems Navigation Pattern recognition Walking aids
  • 相关文献

参考文献17

  • 1李德仁.移动测量技术及其应用[J].地理空间信息,2006,4(4):1-5. 被引量:188
  • 2Lepp?koski H,Collin J,Takala J. Pedestrian navigation based on inertial sensors,indoor map,and WLAN signals[J].Journal of Signal Processing Systems,2013,(03):287-296.
  • 3Faragher R M,Sarno C,Newman M. Opportunistic radio SLAM for indoor navigation using smart phone sensors[A].2012.120-128.
  • 4Yang S,Li Q. Ambulatory walking speed estimation under different step lengths and frequencies[A].2010.658-663.
  • 5Godha S,Lachapelle G,Cannon M E. Integrated GPS/INS system for pedestrian navigation in a signal degraded environment[A].2006.2151-2164.
  • 6Harle R. A survey of indoor inertial positioning systems for pedestrians[J].Communications Surveys and Tutorials,2013,(03):1281-1293.
  • 7张金亮,秦永元,梅春波.基于MEMS惯性技术的鞋式个人导航系统[J].中国惯性技术学报,2011,19(3):253-256. 被引量:57
  • 8Fang L,Antsaklis P J,Montestruque L A. Design of a wireless assisted pedestrian dead reckoning system-the NavMote experience[J].IEEE Transactions on Instrumentation and Measurement,2005,(06):2342-2358.
  • 9Ying H,Silex C,Schnitzer A. Automatic step detection in the accelerometer signal[A].Springer Berlin Heidelberg,2007.80-85.
  • 10侯向锋,刘蓉,周兆丰.加速度传感器MMA7260在步态特征提取中的应用[J].传感技术学报,2007,20(3):507-511. 被引量:42

二级参考文献48

共引文献324

同被引文献14

  • 1陈国良,张言哲,杨洲.一种基于手机传感器自相关分析的计步器实现方法[J].中国惯性技术学报,2014,12(6):794-798. 被引量:45
  • 2Chen Wei, Chen Rui-zhi, Chen Xiang, et al. Comparison of EMG-based speed estimation methods in pedestrian dead reckoning[J]. The Journal of Navigation, 2011, 64(3): 265-280.
  • 3Leh L. ZigBee-based intelligent indoor positioning system soft computing[J]. Soft Computing, 2014, 18(3): 443-456.
  • 4Subramanian S P, Sommer J, Zeh F P, et al. PBIL-PDR for scalable bluetooth indoor localization[C]//The Third Inter- national Conference on Next Generation Mobile Applications, Services and Technologies. IEEE, 2009:170-175.
  • 5Massimo F, Francesco P, Aniello C. Hybrid indoor and outdoor location services for new generation mobile terminals[J]. Personal and Ubiqutous Computing, 2014, 18(2): 271-285.
  • 6Jimenez A R, Seco F, Prieto C, et al. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[C]//IEEE International Symposium on Intelligent Signal Processing. 2009: 37-42.
  • 7Jin Y, Toh H S, Soh W S, et al. A robust dead-reckoning pedestrian tracking system with low cost sensors[C] //2011 IEEE International Conference on Pervasive Computing and Communications. 2011: 222-230.
  • 8Kim J W, Jang H J, Hwang D H, et al. A step, stride and heading determination for the pedestrian navigation system[J]. Journal of Global Positioning Systems, 2004, 3(1-2): 273-279.
  • 9Lee S, Kim B, Kim H, et al. Inertial sensor-based indoor pedestrian localization with minimum 802.15.4a configuration[J]. IEEE Transactions orr Industrial Infor- matics, 2011, 7(3): 455-466.
  • 10v Rai A, Chintalapudi K K, Padmanabhan V N, et al. Zee: zero-effort crowdsourcing for indoor localization[C]// Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. 2012: 293-304.

引证文献1

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部