期刊文献+

锋电位检测信号的EEMD去噪方法研究 被引量:7

EEMD Denoising Method for Neuronal Spike Signals
原文传递
导出
摘要 神经元锋电位(spike)是研究大脑信息编码的基础,因其宽带、小幅值等特点而极易受噪声干扰。针对spike信号的间歇性及非平稳性,采用经验模态分解(EMD,Empirical Mode Decomposition)的改进算法--整体平均经验模态分解(EEMD,Ensemble Empirical Mode Decomposition)对spike检测信号进行分解并结合小波阈值法进行去噪。EEMD能将信号中间歇性成分有效分离出来,解决了EMD产生的模态混叠问题。基于仿真和实测数据将其与EMD去噪方法及多元小波去噪法进行比较,结果表明:EEMD去噪方法不仅有效提高了spike检测信号的信噪比,而且降低了spike波形的畸变。在3种去噪方法中,EEMD去噪方法效果最为显著,对仿真信号的信噪比平均提高了4.177 2d B。为随后spike信号的分类和信息编码奠定了良好基础。 Spikes which are the basis of the research of brain information are sensitive to noise because they are broadband and small amplitude signal. Based on the fact that spikes are intermittent and nonstationary signals, EMD's improved algorithm EEMD was adopted to remove noise from neuronal spike signals with wavelet-threshold method. EEMD can solve EMD's model mixing by separating the intermittent composition in the signal effectively. Comparing with EMD with wavelet-threshold and Multivariate Wavelet, the result of simulation and real data shows that this method can not only improve SNR but also reduce spike waveform distortion. Among the three denoising methods, EEMD is the most effective by improving an average of 4.177 2 db in SNR. It is important for the detection and the next step analysis research of spike.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第1期118-124,共7页 Journal of System Simulation
基金 国家自然科学基金(60971110) 河南省科技攻关计划项目(122102210102)
关键词 锋电位 整体平均经验模态分解 小波阈值法 信噪比 spike EEMD wavelet-threshold method signal-to-noise ratio
  • 相关文献

参考文献10

  • 1万红,李晓燕,刘新玉,张晓娜.锋电位检测信号的多元小波去噪方法研究[J].系统仿真学报,2013,25(10):2487-2491. 被引量:2
  • 2王清波,代建华,章怀坚,郑筱祥.基于非线性能量算子和匹配滤波的锋电位检测与分类[J].仪器仪表学报,2011,32(1):81-86. 被引量:4
  • 3袁玲,杨帮华,马世伟.基于HHT和SVM的运动想象脑电识别[J].仪器仪表学报,2010,31(3):649-654. 被引量:46
  • 4吴丹,封洲燕,王静.微电极阵列神经元锋电位信号的去噪方法[J].浙江大学学报(工学版),2010,44(1):104-110. 被引量:8
  • 5Ronggen Yang,Mingwu Ren.Wavelet denoising using principal component analysis[J]. Expert Systems With Applications . 2010 (1)
  • 6Luca Citi,Jacopo Carpaneto,Ken Yoshida,Klaus-Peter Hoffmann,Klaus Peter Koch,Paolo Dario,Silvestro Micera.On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes[J]. Journal of Neuroscience Methods . 2007 (2)
  • 7P.G Musial,S.N Baker,G.L Gerstein,E.A King,J.G Keating.Signal-to-noise ratio improvement in multiple electrode recording[J]. Journal of Neuroscience Methods . 2002 (1)
  • 8ZHAOHUA WU,NORDEN E. HUANG.ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD. Advances in Adaptive Data Analysis . 2009
  • 9EEIC 2011 2011 International Conference on Electric and Electronics (CHN Nanchang 2011 06 20 - 2011 06 22),Wan H.,Liu X.-Y.,Niu X.-K.,Chen S.-L.,Wang Z.-Z.,Shi L.The design and implementation of anti-interference system in neural electrophysiological experiments. Lecture Notes in Electrical Engineering . 2011
  • 10Hu, Meng,Liang, Hualou.Adaptive multiscale entropy analysis of multivariate neural data. IEEE Transactions on Biomedical Engineering . 2012

二级参考文献53

共引文献61

同被引文献55

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部