期刊文献+

油液磨粒超声回波信号的双树复小波去噪研究 被引量:2

Study on the De-noising of Ultrasonic Echo Signal for Oil Wear Debris Using the Dual-tree Complex Wavelet Transform
下载PDF
导出
摘要 超声回波信号反映了润滑油中磨粒的大量信息。为了提取淹没在强噪声环境下的超声回波信号,提出了一种基于双树复小波变换(DT-CWT)的油液磨粒超声散射回波信号去噪新方法。利用双树复小波变换具有近似平移不变性和有效去噪等优点,首先对超声散射回波信号进行双树复小波分解,然后对分解得到的高频系数进行阈值处理,最后进行双树复小波重构。结果表明:分解层数为6层时,去噪后信号的信噪比更高、均方误差更小、相似系数更大、幅值最大偏差更小。双树复小波变换硬阈值去噪效果比传统小波去噪效果明显好。 The ultrasonic echo signal reflecting the debris lubricant contains a lots of information. In order to extract the ultrasonic echo signal submerged in strong background noise,a new de-noising method of ultrasonic scattering echo signal for oil wear debris based on the Dual-Tree Complex Wavelet Transform( DT-CWT) is proposed. Firstly,for the DT-CWT having the approximate shift-invariant and effective de-noising,the ultrasonic scattering echo signals are decomposed by using the DT-CWT,and then the threshold processing of high frequency coefficients is performed,finally,the signal is reconstructed by using the DT-CWT. The simulated and experimental results show that the SNR of the de-noising signal is higher,the RMSE is smaller,the NCC is higher,and the maximum amplitude difference( MAD) is smaller at a decomposition order of six. The DT-CWT de-noising method by using a hard threshold is more obvious than the traditional wavelet de-noising method.
机构地区 军械工程学院
出处 《机械科学与技术》 CSCD 北大核心 2015年第2期229-233,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50705097 51305454) 清华大学摩擦学国家重点实验室开放基金项目(SKLTKF09B06)资助
关键词 双树复小波变换 超声回波信号 分解层数 去噪 油液磨粒 computer simulation decomposition order design of experiments de-noising DT-CWT efficiency experiments lubricants mean square error noise abatement oil wear debris schematic diagrams signal reconstruction signal to noise ratio ultrasonic echo signal ultrasonics wavelet transforms
  • 相关文献

参考文献15

二级参考文献106

共引文献107

同被引文献15

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部