期刊文献+

一种具有学习能力的人工蜂群优化算法 被引量:2

An Artificial Bee Colony Optimization Algorithm with learning Ability
下载PDF
导出
摘要 针对传统人工蜂群算法对高维多峰问题优化时常常易陷入局部最优解,导致算法早熟收敛,而对单峰问题优化时收敛速度不够快的不足.为了使算法的性能得到进一步的优化,提出了一种带有双重学习能力的人工蜂群改进算法(DLABC).DLABC算法中采蜜蜂对蜜源邻域进行局部搜索时,增加个体对其自身最优值的自我学习能力和对种群中的其他个体最优值的社会学习能力,使用随着迭代次数动态变化的学习权重因子来平衡种群的局部搜索和全局探测能力,防止算法早熟收敛和加快收敛速度.通过对标准函数仿真测试验证,和几个改进的人工蜂群算法比较,DLABC算法的优化性能有了较大程度的提高. When using traditional artificial bee colony algorithm to optimize the multi-dimensional and multimodal problems,usually only the local optimal solutions are obtained,and the rate of convergence is slow when the classical algorithm is used to handle the single modal problems.In this paper,we propose an artificial bee colony algorithm with double learning ability,which are called DLABC.This algorithm improves the self-learning ability of its optimal value for the individual,and improves the social learning ability of optimal value for other individuals in the colony,while it is searching the bee source neighborhood locally.Learning weight factor is introduced to balance the local search and global search of colony,and it changes dynamic with the numbers of iteration,which can avoid premature convergence and accelerate the rate of convergence.Finally,the experimental evaluations show that DLABC algorithm is more efficient than other improved artificial bee colony algorithms.
作者 洪月华
出处 《微电子学与计算机》 CSCD 北大核心 2015年第6期154-158,共5页 Microelectronics & Computer
基金 广西自然科学基金青年项目(2012GXNSFBA053178) 广西高校科学技术研究项目(KY2015YB351)
关键词 人工蜂群算法 优化 学习能力 artificial bee colony algorithm optimization learning capacity
  • 相关文献

参考文献5

二级参考文献37

  • 1王湘中,喻寿益,贺素良,夏利锋.一种强引导进化型遗传算法[J].控制与决策,2004,19(7):795-798. 被引量:13
  • 2Basturk B, Karaboga D.An Artificial Bee. Colony (ABC) Algorithm for Numeric function Optimization[R].USA:IEEE Swarm Intelligence Symposium 2006,2006.
  • 3Teodorovi' c D, Dell' Orco M.Bee colony optimization-a cooperative learning approach to complex transportation problems[C]//Proceedings of the 10th EWGT Meeting,Poznan,13-16 September 2005.
  • 4Drias H,Sadeg S,Yahi S.Cooperative bees swarm for solving the maximum weighted satisfiability problem,computational intelligence and bioinspired systems[C]//Proceedings of the 8th International Workshop on Artificial Neural Networks,IWANN 2005,Vilanova i la Gehr, Barcelona, Spain, 8-10 June 2005.
  • 5Abbass H A.Marriage in honey-bee optimization (MBO):a haplometrosis polyginous swarming approach[C]//The Congress on Evolutionary Computation,2001:207-214.
  • 6Abbass H A.A monogenous MBO approach to satisfiability[C]//Proceeding of the International Conference on Computational Intelligence for Modeling, Control and Automation, 2001.
  • 7Yang X S.Engineering optimizations via nature-inspired virtual bee algorithms[C]//Lecture Notes in Computer Science.Springer,2005: 317-323.
  • 8Karaboga D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[R].Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
  • 9DORGO M, MANIEZZO V, COLORNI A. The ants system: optimization by a colony of cooperating agents [J]. IEEE Transactions on System, Man and Cybernetics Part B: Cybernetics, 1996, 26(1) : 29-41.
  • 10KENNEDY J, EBETHART R. Particle swarm optimization [ C ]// Proceeding of IEEE International Conference on Neural Networks. Piseataway, NJ: IEEE Computer Society, 1995:1942 - 1948.

共引文献183

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部