摘要
The asymptotic expansion of the heat kernel Θ(t)=sum from ∞ to j=1 exp(-tλ_j) where {λ_j}_(j=1)~∞ are the eigen-values of the negative Laplacian -Δ_n=-sum from n to k=1((?))~2 in R^n(n=2 or 3) is studied for short-time t for a generalbounded domain Ω with a smooth boundary (?)Ω.In this paper,we consider the case of a finite number of theDirichlet conditions φ=0 on Γ_i (i=1,...,J) and the Neumann conditions (?)=0 on Γ_i (i=J+1,...,k) andthe Robin conditions ((?)+γ_i)φ=0 on Γ_i (i=k+1,...,m) where γ_i are piecewise smooth positive impedancefunctions,such that (?)Ω consists of a finite number of piecewise smooth components Γ_i(i=1,...,m) where(?)Ω=(?)Γ_i.We construct the required asymptotics in the form of a power series over t.The senior coefficients inthis series are specified as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a“special ideal gas”,i.e.,the set of non-interacting particles set up in abox with Dirichlet,Neumann and Robin boundary conditions for the appropriate wave function.Calculationof the thermodynamic quantities for the ideal gas such as the internal energy,pressure and specific heat revealsthat these quantities alone are incapable of distinguishing between two different shapes of the domain.Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function;nevertheless,its formal theoretical motivation is of some interest.
The asymptotic expansion of the heat kernel Θ(t)=sum from ∞ to j=1 exp(-tλ_j) where {λ_j}_(j=1)~∞ are the eigen-values of the negative Laplacian -Δ_n=-sum from n to k=1((?))~2 in R^n(n=2 or 3) is studied for short-time t for a generalbounded domain Ω with a smooth boundary (?)Ω.In this paper,we consider the case of a finite number of theDirichlet conditions φ=0 on Γ_i (i=1,...,J) and the Neumann conditions (?)=0 on Γ_i (i=J+1,...,k) andthe Robin conditions ((?)+γ_i)φ=0 on Γ_i (i=k+1,...,m) where γ_i are piecewise smooth positive impedancefunctions,such that (?)Ω consists of a finite number of piecewise smooth components Γ_i(i=1,...,m) where(?)Ω=(?)Γ_i.We construct the required asymptotics in the form of a power series over t.The senior coefficients inthis series are specified as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a“special ideal gas”,i.e.,the set of non-interacting particles set up in abox with Dirichlet,Neumann and Robin boundary conditions for the appropriate wave function.Calculationof the thermodynamic quantities for the ideal gas such as the internal energy,pressure and specific heat revealsthat these quantities alone are incapable of distinguishing between two different shapes of the domain.Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function;nevertheless,its formal theoretical motivation is of some interest.