期刊文献+

用广义乘子法求解航天器最优平面再入轨迹 被引量:2

Entry Trajectory Optimization Using Generalized Lagrange Multiplier
下载PDF
导出
摘要 从纵向平面无量纲航天器质点运动方程出发,引入了能量参数对运动方程进行推导,使得运动方程和优化问题易于处理。通过将优化变量转化为分段连续的线性函数和Runge-Kutta数值计算方法,将轨迹优化问题转化为非线性规划问题,应用广义乘子法对其进行数值分析,给出了不同航程要求下,总加热量最小,满足终端要求以及过载、动压、热流约束的航天器最优轨迹,并分析了其特点。 We begin with the standard point-mass dimensionless equations of motion in the vertical plane over a spherical nonrotating Earth. The negative specific energy were used in stead of time in the motion equations, both the equations and the optimization problem were simplified. The control variables, namely drag and lift, were treated as continuous piecewise-linear functions of the negative specific energy. By the Runge-Kutta methods, the trajectory optimization problem was transferred to nonlinear programming, which were solved by the Generalized Lagrange Multiplier. The optimal entry trajectories with different downrange distance of minimal accumulated heat load were gained, which satisfy the constraints of heating-rate, dynamic pressure and load factor. The characters of the optimal entry trajectories were discussed.
出处 《飞行力学》 CSCD 2004年第2期49-52,56,共5页 Flight Dynamics
基金 863计划资助项目(2002AA726011)
关键词 再入轨迹 优化 广义乘子法 re-entry trajectory optimization Generalized Lagrange Multiplier
  • 相关文献

参考文献5

  • 1李小龙,陈士橹.航天飞机的最优再入轨迹与制导[J].宇航学报,1993,14(1):7-13. 被引量:8
  • 2[2]John T Betts.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control,and Dynamics,1998,21(2):1-12.
  • 3阮春荣.大气中飞行的最优轨迹.茅振东译.北京:宇航出版社,1987
  • 4[4]Ping lu.Entry guidance and trajectory control for reusable launch vehicle[J].Journal of Guidance,Con- trol,and Dynamics,1997,20(1):143-149.
  • 5[5]Ping lu,John M.Entry guidance for the X-33 vehicle[J].Journal of Spacecraft and Rockets,1998,35(3):376-384.

二级参考文献3

  • 1Li X L,1989年
  • 2谢建玲,国外导弹与航天运载器,1989年,1期
  • 3李小龙,1990年

共引文献8

同被引文献18

  • 1周净扬,周荻.月球探测器软着陆精确建模及最优轨道设计[J].宇航学报,2007,28(6):1462-1466. 被引量:21
  • 2税清才,方振平.非线性数学规划在飞行力学中的应用[J].飞行力学,1995,13(3):29-36. 被引量:5
  • 3朱建丰,徐世杰.基于自适应模拟退火遗传算法的月球软着陆轨道优化[J].航空学报,2007,28(4):806-812. 被引量:46
  • 4陈宝林.最优化理论与算法[M].北京:清华大学出版社,2000..
  • 5Francesco N, Mario I. Missile Trajectory Optimization with Agility Issues[ R], AIAA-96-3730,1996.
  • 6Robert T, David S R. Trajectory Optimization for a Fixed- Trim Reentry Vehicle Using Direct Collocation and Nonlinear Programming[ R]. AIAA-2000-4262,2000.
  • 7Bock H G, Pliff K J. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problem[ C]. Proceeding of the 9th IFAC Conference, 1984:1 603-1 608.
  • 8Hargraves C R, Paris S W. Direct Trajectory Optimization Using Nonlinear Programming and Collocation [ J ]. Journal of Guidance, Control, and Dynamics, 1987, 10 (4) : 338-342.
  • 9刘培玉.应用最优控制[M].大连:大连理工大学出版社,1991.
  • 10Biegler L T. An overview of simuhaneous strategies for dynamic optimization [J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(11): 1043-1053.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部