期刊文献+

最优化方法在确定对流混合层顶夹卷率中的应用

Application of the Optimization Arithmetic to Ascertain the Entrainment Velocity in the Top of the Well-Mixed Layer
下载PDF
导出
摘要 晴天充分混合的对流边界层 (CBL)中常采用相对简单的零阶近似平板模式。在该模式中 ,通常假设边界层顶的夹卷通量与地面通量有着固定的线性关系作为其闭合条件 ,即 (wθ) h=-A (wθ) s。由于受观测资料的限制 ,参数A通常是由大涡模拟 (LES)的方法得到 ,并利用有限的观测资料加以验证。作者基于ARM (AtmosphericRadiationMeasure mentProgram)观测资料 ,利用最优化参数算法 ,确定该闭合参数 ,使得对流混合层模式能最大可能地再现实际边界层的发展过程。首次尝试了最优参数算法在确定真实物理过程参数中的应用。模拟结果分析表明 ,在观测资料足够多的情况下 。 A simple zero-order flat model is usually used to characterize the well-mixed convective boundary layer under clear sky. In this model, we often hypothesize the closed-condition as the entrainment flux in the top of the atmosphere boundary layer has the fixed linear relationship to the surface heat flux, that is( (wθ) h=-A (wθ) s). Due to the limited observation data, the parameter A is always obtained from the large eddy simulation, then the limited observation data is utilized to confirm it again. In this study, based on the ARM data the optimization arithmetic is used to ascertain the closed-parameter, so that the convective mixed layer model can reappear the actual boundary layer’s developing process. This study tries to apply the optimization arithmetic to ascertain the factual physical process parameter. The results suggest that, if the data is enough, the optimization arithmetic should be an effective approach to ascertain the closed-parameter.
出处 《大气科学》 CSCD 北大核心 2004年第1期112-124,共13页 Chinese Journal of Atmospheric Sciences
基金 中国科学院创新项目KZCX2 2 0 8 "十五"攻关项目 2 0 0 1BA60 7B 国家自然科学基金资助项目 40 2 3 3 0 3 1资助
关键词 对流混合层 夹卷率 最优化算法 大涡模拟 闭合参数 mixed layer entrainment velocity optimization arithmetic
  • 相关文献

参考文献12

  • 1[1]Ball, F. K. , Control of inversion height by surface heating, Quart. J. Roy. Meteor. Soc. , 1960, 86, 483~494.
  • 2[2]Lilly, D. K. , Models of cloud-topped mixed layers under a strong inversion, J. Atmos. Sci. , 1968, 30, 1092~1099.
  • 3[3]Kraus, E. B. , Atmosphere-Ocean Interaction. Cambridge University. Press, Oxford, 1972, 275pp.
  • 4[4]Tennekes, H. , A model for the dynamics of the inversion above a convective layer, J. Atmos. Sci. , 1973, 30,558~567.
  • 5[5]Wyngaard, J. C. , and R. A. Brost, Top-down amd bottom-up diffusion of a scalar in the convective boundarylayer, J. Atmos. Sci. , 1984, 41, 102~112.
  • 6[6]Margreet, C. V., P. G. Duynkerke, and W. M. C. Joannes, Entrainment parameterization in convective boundary layers, J. Atmos. Sci. , 1999, 56, 813~828.
  • 7[7]Stull, R. B. , The energetics of entrainment across a density interface, J. Atmos. Sci. , 1976, 33, 1260~1267.
  • 8[8]Driedonks, A. G. M. , Dynamics of the Well-Mixed Atmospheric Boundary Layer, Doctoral Dissertation, Free University of Amsterdam, KNMI Scientific Report WR 81-2, 1981, 189pp.
  • 9[9]Driedonks, A. G. M, models and observations of the growth of the atmospheric boundary layer, Boundary Layer Meteorology, 1982, 23, 283~306.
  • 10[10]Mu Mu, Duan Wangsuo, and Wang Jiacheng, The predictability problems numerical weather and climate predic tion, Adv. Atmos. Sci. , 2002, 19 (2), 191~204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部