期刊文献+

波浪非线性弥散关系及其应用 被引量:6

A wave nonlinear dispersion relation and its application
下载PDF
导出
摘要 针对Hedges及Kirby等对Kirby和Dalrymple的非线性弥散关系的修正关系,在小波陡时中等水深范围存在较大偏差的问题,给出了一个新的非线性弥散关系。比较可知,新的关系在小波陡时减小了中等水深范围内50%的误差,而在大波陡时能够保持其单调性,且形式上更为简练。将其应用于含弱非线性效应的缓坡方程进行数值验证,结果表明,采用新的非线性弥散关系得到的计算结果与实测结果更为吻合。 A new nonlinear dispersion relation of wave over the whole range of possible water depths is given in this paper. It reduces the excess phase speed overprediction of both Hedges' modified relation and Kirby and Dalrymple's modified relation in the region of 1<kh<15 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. Making use of the new form along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is obtained and applied to laboratory data for the test. The results show that the model using the new dispersion relation can predict the wave transformation over the complicated bathymetry quite well.
出处 《海洋工程》 CSCD 北大核心 2004年第3期20-24,共5页 The Ocean Engineering
基金 国家自然科学基金重点资助项目(50339010) 教育部科学技术研究重点资助项目(03095) 河海大学科技创新基金资助课题(2001410543)
关键词 非线性弥散关系 波浪变形 缓坡方程 波陡 nonlinear dispersion relation wave transformation mild slope equation wave steepness
  • 相关文献

参考文献10

  • 1Kirby J T, Dalrymple R A. An approximate model for nonlinear dispersion in monochromatic wave propagation models[J]. Coastal Eng., 1986,(9): 545-561.
  • 2Whitman G B. Non-linear dispersion of water waves[J]. J. Fluid Mech., 1967, 27: 399-412.
  • 3Hedges T S. An empirical modification to linear wave theory[A]. Proc. Inst. Civ. Eng[C]. 1976, 61:575-579.
  • 4Hedges T S. An approximate model for nonlinear dispersion in monochromatic wave propagation models[J]. by Kirby J T and Dalrymple R A. Discussion, Coastal Eng.,1987,(11):87-88.
  • 5Kirby J T, Dalrymple R A. An approximate model for nonlinear dispersion in monochramatic wave propagation models[J]. by Kirby J T and Dalrymple R A. Replay, Coastal Eng.,1987,(11):89-92.
  • 6Booij N. Gravity waves on water with non-uniform depth and current[R]. Dept. Civ. Eng., Delft University of Technology,1981,81-1.
  • 7Dingemans M W. Water wave propagation over uneven bottoms[M]. World Scientific, Singapore, 1997.
  • 8李瑞杰,严以新,曹宏生.Nonlinear Dispersion Relation in Wave Transformation[J].海洋工程:英文版,2003,17(1):117-122. 被引量:6
  • 9Kirby J T, Dalrymple R A. Rational approximations in the parabolic equation method for water waves[J]. Coastal Eng., 1986,(10): 355-378.
  • 10洪广文,冯卫兵,张洪生.海岸河口水域波浪传播数值模拟[J].河海大学学报(自然科学版),1999,27(2):1-9. 被引量:15

二级参考文献18

  • 1洪广文 成功大学.非均匀水流中波浪折射-绕射数学模型.1995两岸港口及海岸开发研讨会论文集:上集[M].台南:成功大学出版社,1995.81-96.
  • 2洪广文 中国海洋工程学会.波浪折射、绕射数学模型.第七届全国海岸工程学术讨论会论文集:下集[M].北京:海洋出版社,1994.808-815.
  • 3洪广文 中国海洋工程学会.缓变水深和流场水域波浪折射、绕射数值模拟.第八届全国海岸工程学术讨论会论文集:下集[M].北京:海洋出版社,1997.703-714.
  • 4Befldaoff, J.C.W., Booij, N. and Radder, A.C., 1982.Verification of numerical wave propagation models for simple harmonic linear water waves, Coastal Eng., 6, 255- 279.
  • 5Dingemans, M.W. , 1997. Water wave propagation over uneven bottoms, World Scientific, Singapore.
  • 6Hedges, T.S., 1976. An empirical modification to linear wave theory, Proc. Inst. Cir. Eng., 61, 575 - 579.
  • 7Hedges, T.S., 1987. An approximate model for nonlinear dispersion in monochromatic wave propagation models by Kirby, J.T. and Dalrymple, B.A. Discussion, Coastal Eng.,11, 87- 88.
  • 8Kirby, J.T. and Dalrymple, B.A., 1986. An approximate model for nonlinear dispersion in monochromatic wave propagation models, Coastal Eng., 9, 545 - 561.
  • 9Kirby, J.T. and Dalrymple, R.A., 1987. An approximate model for nonlinear dispersion in monochramatic wave propagation models, by Kirby, J.T. and Dalrymple, B.A. Replay,Coastal Eng., 11, 89- 92.
  • 10LI Rui-jie and WANG Hou-jie, 1999. A modified form of mild-slope equation with weakly nonlinear effect, China Ocean Engineering, 13(3): 327-333.

共引文献18

同被引文献29

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部