期刊文献+

基于进化策略的多传感器雷达辐射源目标识别方法 被引量:2

Evolutionary strategies based target identification approach for multisensor radar radiant point
下载PDF
导出
摘要 多传感器雷达辐射源目标识别中,各传感器检测数据常常是不完整的、还可能存在矛盾,为此,针对这种多传感器检测结果提出一种改进的融合识别方法.首先,该方法基于命题概率分布与识别报告提供的概率分布估计间的差异建立目标函数;然后利用进化策略对传感器目标函数进行优化,在无须使用目标函数的导数信息的情况下,求得命题的概率分配.仿真结果表明该方法正确有效.改进的融合识别方法,有效地利用了进化策略的良好全局搜索能力,使优化过程能够顺利收敛到最优解附近,具有较好的收敛性,效果优于传统的融合识别方法. Since the observed data at each sensor are often incomplete and even conflict, when identifying a radiant target by using the multi-sensor, an improved fusion identification approach is proposed. By this method, the cost function is first constructed on the basis of the discrepancy between the true probability distribution and the estimated probability distribution based on each sensor report. Then the cost function is optimized by evolutionary strategies to obtain the probability distribution of the proposition without using derivatives of the cost function. Simulation shows that the proposed approach is better than the traditional fusion identification methods. As a matter of fact, it effectively uses the globally searching capability of the evolutionary strategy and makes the optimization process smoothly converging to the neighborhood of the optimal solution.
作者 方敏 王宝树
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第2期165-168,共4页 Control Theory & Applications
基金 国防科技预研基金项目(413150801) 综合业务网国家重点实验开放基金项目(ISN6-7) 电科院基金项目(D57.7.1.3).
关键词 目标识别 决策融合 进化策略 target identification decision fusion evolutionary strategies
  • 相关文献

参考文献5

  • 1BOGLER P L. Shafer dempster reasoning with application to multisensor target identification systerm [J]. IEEE Trans on Systems,Man, and Cybernetics, 1987,6(17) :968 - 977.
  • 2DRAKOPOULOS E, LEE C C. Optimum multisensor fusion of correlated local decisions [J]. IEEE Trans on Aerospace and Electronic Systems, 1991,27 (4): 593 - 605.
  • 3LI Lingjie, LUO Z3iquan. A convex optimization approach to the fusion of identity information [C]/Proc of SPIE Architectures, Algorithms, and Applications. Washington: Huntsville Press, 1999,3719:389 - 397.
  • 4FUSTEARE, IBARS AB, ANTEQUERAJP, etal. CFAR data fusion center with inhomogeneons receivers [J]. IEEE Trans on Aerostpace and Electronic Systems, 1992,28(1) :276 - 285.
  • 5KlM J H, MYUNG H. Evolutionary programming techniques for constrained op tmfization problems [J]. IEEE Trans on Evolutionary Computation, 1997,1(2):129- 140.

同被引文献30

  • 1朱大奇,杨永清,于盛林.电子部件故障诊断的Dempster-Shafer信息融合算法[J].控制理论与应用,2004,21(4):659-663. 被引量:18
  • 2Bengio Y, Delalleau O. On the expressive power of deep archi-tecture [M]// Algorithmic Learning Theory. Springer,2011:18-36.
  • 3Bengio Y. Deep Learning of representations for unsupervisedand transfer leamingCCj/ZlMLR Washington, USA, 2012; 17-36.
  • 4Hinton G,Salakhutdinov R. Reducing the dimensionality of datawith neural networks [J]. Science,2006,313(5786) :504-507.
  • 5Hinton, Salakhudinov R. Training a deep auto-encoder or a clas-sifier on MINIST digits [OL]. http://www. cs. toronto. edu/Hinton/Matlab For Science Paper, html.
  • 6Kantardzic M. Data Mining: Conception, Model, and Algorithm(Edition 2)[M]. Beijing:Tsinghua University press,2013.
  • 7Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise trai-ning of deep networks [C]//Proc of the 12th Annual Confer-ence on Neural Information Processing System. 2006; 153-160.
  • 8Hinton G,Osindero S,Teh Y. A fast learning algorithm for deepbelief nets[J]. Neural Computation,2006,18(7) : 1527-1554.
  • 9Bengio Y. Learning Deep Architectures for AI[J], Foundationsand Trends in Machine Learning,2009.2(1) : 1-127.
  • 10Deep Learning 和 Knowledge Graph 引爆大数据革命[OL]. ht-tp://blog. sina. com. cn/s/blog_46d0a3930101fswl. html.

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部