期刊文献+

BP人工神经网络自适应学习算法的建立及其应用 被引量:76

The Establishment of Self-adapting Algorithm ofBP Neural Network and Its Application
原文传递
导出
摘要  解决了BP神经网络结构参数、学习速率与初始权值的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络自适应学习算法,又将其编制成计算机程序,使得输入节点、隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改善了学习速率和网络的适应能力.计算结果表明:BP神经网络自适应学习算法较传统的方法优越,训练后的神经网络模型不仅能准确地拟合训练值,而且能较精确地预测未来趋势. We resolve the problem of selecting architectural parameters, learning rate, initial connection weights and improves BP algorithm of artificial neural network. The self\|adapting algorithm of BP artificial neural network has been proposed, and programmed a C language procedure. It can make the selection of input units, hidden units and learning rate easily in the course of training, reduce external interference and improve the adaptive ability of learning rate and neural network. Our conclusion shows that the self\|adapting algorithm of BP artificial neural network superior to the statistical modeling approach and the traditional BP artificial neural network, it can not only exactly imitate training valuation but also make prediction accurately.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2004年第5期1-8,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70271073) 国家社会科学基金(01BJY025)
关键词 人工神经网络 BP算法 自适应 自组织方法 artificial neural network BP algorithm self-adapting group method of data handling
  • 相关文献

参考文献21

  • 1Hagan M T ,Menhaj M B. Training feed forward networks with Marquart algorithm[J]. IEEE Trans on Neural Networks ,2001,5(6):989-993.
  • 2Kandel E R, Schwarts J. Principles of Neural Science[M]. chapter 1-2 Elsevier 1985,1-56.
  • 3Hema Rao, Alexey G.Ivakhnenko. Inductive Leaning Algorithms for Complex System modeling[M]. CRC Press, Inc, 1994. 56-78.
  • 4Farlow S J. Self-organizing Method in Moedling[M]. Marcel Dekker, New York, 1996.
  • 5Lippmann R P. An Introduction to Computing With Neural Nets[M]. IEEE ASSP Magazine, 1999, 23-45.
  • 6Cyberko G. Approximations by superpositions of a sigmoidal function[A]. Math Control Singnal System[C], 1989. 45-89.
  • 7Hecht-Nielsen R. Theory of back propagation neural network[J]. Proc of IJCNN, 1989, 1:593-603.
  • 8Edward gately. Neural Network for Financial Forecasting[M]. Wiley, 1996.
  • 9Eitan Michael Azoff. Reducing error in neural network time series forecasting[J]. Neural Computing and Applications, 1999:240-247.
  • 10Emad W Saad, Danil V P, Donald C W. Advance neural network training methods for low false alarm stock trend prediction[A]. Proc of World Congress on Neural Network[C]. Washing D.C., June 1996.60-75

二级参考文献23

共引文献345

同被引文献608

引证文献76

二级引证文献531

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部