期刊文献+

基于多准则神经网络与分类回归树的电信行业异动客户识别系统 被引量:15

A Kind of Unusual Customers Recognition System Based on Multi-criteria Neural Network and CART in Telecom System
原文传递
导出
摘要  以电信行业为应用对象,建立了一种基于多准则神经网络(MCNN)与分类回归树(CART)的的异动客户识别系统.该系统首先用多准则神经网络对客户属性进行约简,然后构造用于识别异动客户的分类回归树.通过对浙江省电信系统的大客户数据的实际验证,结果表明该系统具有较好的鲁棒性和有效性. As the telecom system an application object, this paper presents a kind of unusual customers recognition system based on multi\|criteria neural networks (MCNN) and classification and regression tree (CART) in telecommunication system. The system reduces customers' attribute by multi\|criteria neural networks first. Then it constructs classification and regression trees to recognize unusual customers. Through actual validating to large customer data in Zhejiang telecom system, the results indicate that this system is more robustious and more effective.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2004年第5期78-83,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(79970037)
关键词 分类回归树 人工神经网络 多准则 异动客户 数据挖掘 CART artificial neural networks multi-criteria unusual customers data mining
  • 相关文献

参考文献11

  • 1Han Jiawei, Kamber Micheline. Data Mining: Concepts and Techniques[M]. Morgan Kaufmann Publishers, Inc, 2001.
  • 2David B. Skillicorn, Yu Wang. Parallel and sequential algorithms for data mining using inductive logic[J]. Knowledge and Information Systems, 2001, 3(4):405-421.
  • 3Castro J L, Castro-Schez J J, Zurita J M. Use of a fuzzy machine learning technique in the knowledge acquisition process[J]. Fuzzy Sets and Systems, 2001, 123(3):307-320.
  • 4Maimon O, Abraham Kandel, Mark Last. Information-theoretic fuzzy approach to data reliability and data mining[J]. Fuzzy Sets and Systems. 2001, 117(2):183-194.
  • 5Witold Pedrycz. Fuzzy set technology in knowledge discovery[J]. Fuzzy Sets and Systems, 1998, 98(3):279-290.
  • 6Shouhong Wang, Hai Wang. Knowledge discovery through self-organizing maps: data visualization and query processing[J]. Knowledge and Information Systems, 2002, 4(1): 31-45.
  • 7姚敏.An Introduction to Generalized Computing[J].International Journal of Mining Science and Technology,2000,21(1):30-35. 被引量:2
  • 8YAO Min,\ SONG Zhi\|huan Information College, Zhejiang University, Hangzhou 310028, China.A kind of Generalized Learning Model[J].Systems Science and Systems Engineering,1999,9(4):68-73. 被引量:3
  • 9Breiman L, Friedman J H, Olshen R A, Stone C J. Classification and Regression Trees[M]. London: Chapman & Hall, 1984.
  • 10Taghi M. Khoshgoftaar, Edward B Allen, Wendell D Jones, et al. Classification-tree models of software-quality over multiple releases[J]. IEEE Transnsactions on Reliability, 2000, 49(1):4-11.

二级参考文献5

  • 1Tian X Z.Research on generalized computing models[]..1999
  • 2Turban E.Expert systems and applied artificial intelligence[]..1992
  • 3Yao M.Research on generalized computing[].Fuzzy Sets and Systems.1997
  • 4Kosko B.Neural networks and fuzzy systems[]..1992
  • 5Min, Yao, Jianhua, Luo.Research on Generalized Computing Systems[J].Journal of Systems Engineering and Electronics,1998,9(3):39-43. 被引量:3

共引文献12

同被引文献191

引证文献15

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部