期刊文献+

一类三维偏微分方程边值问题的解法 被引量:14

Solution to a class of boundary-value problem of three-dimensional partial differential equations
下载PDF
导出
摘要 基于偏微分方程第三类边值问题,提出了一类同时包含第一类、第三类边界条件的边值问题,探讨了此类边值问题如何转化为变分与泛函极值问题.用三个定理证明了在一定条件下三者解之间的等价关系,拓宽了偏微分方程边值问题的求解思路 并灵活运用此三类问题,使复杂方程问题简单化 这不仅为数学、还为物理、生物、化学。 Based on the third class boundary value problem for three-dimensional partial differential (equations,) a new boundary value problem,which includes the first and third class boundary conditions, was proposed. The transformations from this class of boundary value problem to variational problem and functional extremal problem were discussed. By using three theorems the relationship among the three solutions was proven equal under certain conditions. Therefore, methods of solving the boundary value problem of partial differential equations are extended. In pratice, this method can simplify the difficult problems and provide shortcut for solving equations in mathematics, physics and mechanics.
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 2004年第4期328-331,共4页 Journal of Jiangsu University:Natural Science Edition
基金 江苏省教育厅自然科学基金资助项目(01KJB180003)
关键词 边值问题 变分问题 泛函极值问题 boundary value problem variational problem functional extremal problem
  • 相关文献

参考文献7

二级参考文献23

  • 1Y.L. Zhou(Laboratory of Computational Physics, Centre for Nonlinear Studies, Institute of AppliedPhysics and Computational Mathematics, Beijing, China).DIFFERENCE SCHEMES WITH NONUNIFORM MESHES FOR NONLINEAR PARABOLIC SYSTEM[J].Journal of Computational Mathematics,1996,14(4):319-335. 被引量:12
  • 2李正元 叶其孝.反应扩散方程引论[M].北京:科学出版社,1990..
  • 3李荣华 冯果沈.解微分方程的数值方法[M].北京:人民教育出版社,1980.1-416.
  • 4Giachetti D, Porzio M M. Local Regularity Results for Minima of Functionals of the Calculus of Variation. Nonlinear Analvsis. TMA. 2000. 39:463-482.
  • 5Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. New Jersy: Princeton University Press, 1983.
  • 6Ladyzhenskaya O, Ural'teseva N. Linear and Quasilinear Elliptic Equations. Math. in Science and Engineering 46. New York: Academic Press, 1968.
  • 7Heinonen J, Kilpelainen T, Martio O. Nonlinear Potential Theory of Second Order Degenerate Elliptic Partial Differential Equations. London: Oxford University Press, 1993.
  • 8Li Gongbao, Martio O. Stability of Solutions of Varying Degenerate Elliptic Equations. Indiana Univ. Math. J., 1998, 47(3): 873-891.
  • 9Iwaniec T, Sbordone C. Weak Minima of Variational Integrals. J. Reine. Angew. Math., 1994, 454:143-161.
  • 10Iwaniec T, Migliaccio L, Nania L, Sbordone C. Integrability and Removability Results for Quasiregular Mappings in High Dimension. Math. Scand, 1994, 75:263-279.

共引文献34

同被引文献65

引证文献14

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部