期刊文献+

一种快速支持向量机分类算法的研究 被引量:13

A Fast Classification Algorithm of Support Vector Machines
下载PDF
导出
摘要 提出一种快速的支持向量机分类算法———FCSVM ,对支持向量集采用变换的方式 ,用少量的支持向量代替全部支持向量进行分类计算 ,在保证不损失分类精度的前提下使得分类速度有较大提高 在UCI标准数据集上进行的分类实验以及在FERET标准人脸库上进行的人脸识别实验都表明该算法具有较好的性能 ,在一定程度上克服了传统的支持向量机分类速度较慢的缺点、尤其在训练集规模庞大、支持向量数量较多的情况下 ,采用该算法能够较大幅度地减小计算复杂度 。 Proposed in this paper is a fast classification algorithm of support vector machines—FCSVM (fast classification for support vector machines). After the transformation on the full set of support vectors, a subset of support vectors, which contains fewer support vectors, is used in classification. The speed of classification is much faster than that of conventional SVMs in the condition that the correct rate does not decline. The classification experiments on the UCI database and the face recognition experiments on the FERET face database are done with this algorithm. The experimental results show that it has better performance and partly overcomes the flaw of standard SVMs, which is slow in the process of classification. This algorithm can remarkably reduce the computation and increase the speed of classification, especially in the case of large number of support vectors.
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第8期1327-1332,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目 ( 60 2 73 0 3 3 ) 江苏省十五科技攻关项目 (BE 2 0 0 10 2 8)
关键词 支持向量机 快速算法 分类 FCSVM support vector machine fast algorithm classification FCSVM
  • 相关文献

参考文献14

  • 1V N Vapnik.统计学习理论的本质.张学工译.北京:清华大学出版社,2000(V N Vapnik. The Nature of Statistical Learning Theory. NY:Springer-Verlag, 1995)
  • 2V Cherkassky, F Mulier. Learning from Data: Concept, Theory and Method. NY: John Wiley & Sons, 1997
  • 3C Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2):121~ 167
  • 4边肇祺,张学工.模式识别.北京:清华大学出版社,2000(Bian Zhaoqi, Zhang Xuegong. Pattern Recognition(in Chinese).Beijing: Tsinghua University Press, 2000)
  • 5Li Yongmin, Gong Shaogang, J Sherrah, et al. Multi-view face detection using support vector machines and eigenspace modelling.In: Proc of the Int'l Conf on Knowledge-based Intelligent Engineering Systems and Allied Technologies. Washington: IEEE Press, 2000. 241~244
  • 6K Jonsson, J Kittler, Y P Li, et al. Support vector machines for face authentication. Image and Vision Computing, 2002, 20 (5-6): 369~375
  • 7I Hadzic, V Kecman. Support vector machines trained by linear programming: Theory and application in image compression and data classification. In: Proc of the 5th Seminar on Neural Network Applications in Electrical Engineering. Thessaloniki: ITI Press,2000. 18~23
  • 8田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 9刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26
  • 10J C Platt. Fast training of support vector machines using sequential minimal optimization. In: B Scholkopf, C Burges, A J Smola,eds. Advances in Kernel Methods: Support Vector Learning.Cambridge, Massachusetts: MIT Press, 1999. 185~208

二级参考文献2

共引文献70

同被引文献111

引证文献13

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部