期刊文献+

视频监控系统中的动目标检测新方法 被引量:2

A method of moving object detection in military video monitoring
下载PDF
导出
摘要 在分析了现有算法在复杂背景下所存在的不足的基础上,提出了一种适用于视频监控系统的基于视频序列像素时空相关性检测的动目标检测方法.该方法首先用每一帧中像素的空间相关性检测出目标,再用序列图像中目标的时间相关性检验目标的真实性,从而最终确定是否有运动目标.试验表明,该方法能很好地检测出运动目标,并具有较强的抗干扰能力. The deficiencies of the actual algorithm in the complex background are analyzed, and a method of moving object detection is given based on the detection of the space-time relativity of the pels in a video sequence which is used in the military video monitoring. By this method, the space (relativity of) the pels in a frame is used to detect the object firstly, and then the authenticity of the object is proved with the time relativity of the object in a video sequence, thus it can be found out whe-(ther ) the moving objects exist or not. It′s verified by the experimentation that the method can be used to detect the moving object from a video sequence well, and has a good anti-jamming ability.
出处 《海军工程大学学报》 CAS 2004年第4期93-96,101,共5页 Journal of Naval University of Engineering
关键词 数字图像处理 运动目标检测 视频监控 digital video processing moving object detection video monitoring
  • 相关文献

参考文献10

二级参考文献33

  • 1谈新权,刘伟宏,黄本雄,江柳.活动图像实时采集的实现[J].华中理工大学学报,1996,24(12):54-57. 被引量:4
  • 2[1]T. Meier, K.N.Ngun. Video Segmentation for ContentBased Coding. IEEE Trans. on Circuits and Systems for Video Technology, 1999, 9(8):1190~1203.
  • 3[2]A.A.Alatan, L.Onural, M.Wollbom, R.Mech, E.Tuncel and T. Sikora. Image Sequence Analysis for Emerging Interactive Multimedia Services-The European COST 211Framework. IEEE Trans. on Circuits and Systems for Video Technology, 1998, 8(7):802~813.
  • 4[3]J.and K.P, Multi-Target Tracking System Using Texture,SPIE, 1997, 3024:229-236.
  • 5[4]M. Kim, J.G.Choi, D.Kim, M.H.Lee, C.Ahn and Y.S.Ho.A VOP Generation Tool: Automatic Segmentation of Moving Objects in Image Sequences Based on SpatioTemporal Information. IEEE Trans. on Circuits and Systems for Video Technology, 1999, 9(8):1216~1226.
  • 6[1]Barron J, Fleet D, Beauchemin S. Performance of optical flow techniques [J]. International Journal of Computer Vision, 1994, 12(1):42~77.
  • 7[2]Lipton A Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video [J]. Proc. of WACV'98, 1998, 8~14.
  • 8[3]Robert T. Collins, et al.. A system for video Surveillance and Monitoring [D] Technical Report CMU-RI-TR-00-12, Carnegie Mellon University 2000, http://www.cs.cmu.edu.
  • 9[4]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [J]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999, 2(6):248~252.
  • 10[5]Jiang C, Matthew. Shadow segmentation and classification in a constrained environment [J]. CVGIP, 1994, 55(2):213~225.

共引文献204

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部