期刊文献+

考虑地基耦合效应时中厚矩形板的非线性自由振动分析 被引量:2

Nonlinear Free Vibration Analysis Including Coupled Effect of Elastic Foundation for Moderate Thickness Rectangular Plates
下载PDF
导出
摘要 基于各向同性中厚板理论,考虑板的非线性效应和地基耦合效应,应用Hamilton变分原理,建立了双参数地基上周边自由中厚矩形板的非线性运动控制方程,提出了一组满足问题全部边界条件的试函数。应用伽辽金法和谐波平衡法对方程进行求解。讨论了板的结构参数和地基的物理参数对弹性地基上周边自由中厚矩形板的非线性自由振动特性的影响。 Based on the theory of isotropic moderate thickness plates and using Hamilton variation principle, the nonlinear equations of motion including the nonlinear effect of plates and the coupled effect of foundation were derived for the moderate thickness rectangular plates on two parameter foundation. The suitable expressions of trial functions satisfied all boundary conditions of the problem were proposed. By using Galerkin method and harmonic balance method, the nonlinear equations were solved. The effects of the structural parameters of plates and the physical parameters of foundation on the nonlinear free vibration behaves for the moderate thickness rectangular plates on elastic foundation with freely supported boundary were discussed.
出处 《力学季刊》 CSCD 北大核心 2004年第3期322-329,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金资助项目(50208004)交通部资助项目(200231582512)
关键词 中厚矩形板 弹性地基 非线性振动 伽辽金法 谐波平衡法 moderate thickness rectangular plates elastic foundation nonlinear vibration Galerkin method harmonic balance method
  • 相关文献

参考文献4

  • 1梁兴复,章权,曲蕾,曲庆璋.用伽辽金法解弹性地基上自由矩形板弯曲、稳定和振动问题[J].青岛建筑工程学院学报,1994,15(1):6-12. 被引量:8
  • 2Sonzogni V E, Idelsohn S R. Free vibration of rectangular plates of exponentially varying thickness and with a free edge[J]. Journal of Sound and Vibration, 1990,140(3):513-522.
  • 3Bhaskar A, Dumir P C. Non-linear vibration of orthotropic thin rectangular plates on elastic foundations[J]. Journal of Sound and Vibration, 1988, 125(1): 1-11.
  • 4Saliba H T. Transverse free vibration of fully clamped symmetrical trapezoidal plates[J]. Journal of Sound and Vibration, 1988, 126(1) : 237-247.

共引文献7

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部